The photoproduction of beauty quarks in events with two jets and a muon has been measured with the ZEUS detector at HERA using an integrated luminosity of 110 pb$^{- 1}$. The fraction of jets containing b quarks was extracted from the transverse momentum distribution of the muon relative to the closest jet. Differential cross sections for beauty production as a function of the transverse momentum and pseudorapidity of the muon, of the associated jet and of $x_{\gamma}^{jets}$, the fraction of the photon's momentum participating in the hard process, are compared with MC models and QCD predictions made at next-to-leading order. The latter give a good description of the data.
No description provided.
No description provided.
No description provided.
Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.
Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of X.
Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.
Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.
The differential cross section as a function of X(NAME=POMERON).
The differential cross section as a function of transverse momentum.
Inclusive phi-meson production in neutral current deep inelastic e+p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 45 pb^{-1}. The phi mesons were studied in the range 10<Q2<100 GeV2, where Q2 is the virtuality of the exchanged photon, and in restricted kinematic regions in the transverse momentum, p_T, pseudorapidity, eta, and the scaled momentum in the Breit frame, x_p. Monte Carlo models with the strangeness-suppression factor as determined by analyses of e+e- annihilation events overestimate the cross sections. A smaller value of the strangeness-suppression factor reduces the predicted cross sections, but fails to reproduce the shapes of the measured differential cross sections. High-momentum phi mesons in the current region of the Breit frame give the first direct evidence for the strange sea in the proton at low x.
The total PHI meson cross section, corrected for acceptance (45%) in the given kinematical region.
Differential PHI meson cross section as a function of its transverse momentum.
Differential PHI meson cross section as a function of its pseudorapidity.
Diffractive production of D*+-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3 pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+-(2010) meson is reconstructed in the decay channel D*+ -> (D0 -> K-pi+) pi+ (+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.
Measurment of total diffractive cross section and ratio to inclusive DIS cross section.
Ratio of diffractive to inclusive D*+- production w.r.t. Q**2.
Ratio of diffractive to inclusive D*+- production w.r.t. W.
The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.
The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.
The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.
Cross section for beauty production with a prompt electron in the restricted kinetic region.
The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.
The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.
The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.
The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.
Fermilab experiment E735 located at the CO intersection region of the\(\sqrt s= 1.8\) TeV\(p\bar p\) collider analysed over 900 Φ→K+K− events. Measured were the transverse momentum spectrum, the correlation between the average transverse momentum <pt> and the charged particle multiphcityNc, as well as the probability of Φ production per charged track,NΦ/Nc, versusNc. We have also made an estinate of the total inclusive cross section for Φ mesons,\(\sigma (p\bar p \to \phi X) = 7.3 \pm 2.2 mb\).
Corrected phi meson transverse momentum distribution at rapidity = 0.
Total inclusive cross section.
Ratio of phi to rho0 production in high and low charged particle multiplicity events.
The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.
PT RANGE FROM 0 TO INFINITY.
PT RANGE FROM 0 TO INFINITY.
No description provided.
The transverse-momentum spectra of lambdas (Λ0, Λ¯0) produced in the central region has been measured in p¯p collisions at s=1.8 TeV at the Fermilab Collider. We find that the average transverse momentum of the lambdas increases more rapidly with center-of-mass energy than that of charged particles, and the ratio of lambdas to charged particles increases as a function of center-of-mass energy.
No description provided.
No description provided.
No description provided.