Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 83 (2023) 1082, 2023.
Inspire Record 2694205 DOI 10.17182/hepdata.145637

A new measurement of inclusive-jet cross sections in the Breit frame in neutral current deep inelastic scattering using the ZEUS detector at the HERA collider is presented. The data were taken in the years 2004 to 2007 at a centre-of-mass energy of $318\,\text{GeV}$ and correspond to an integrated luminosity of $347\,\text{pb}^{-1}$. Massless jets, reconstructed using the $k_t$-algorithm in the Breit reference frame, have been measured as a function of the squared momentum transfer, $Q^2$, and the transverse momentum of the jets in the Breit frame, $p_{\perp,\text{Breit}}$. The measured jet cross sections are compared to previous measurements and to perturbative QCD predictions. The measurement has been used in a next-to-next-to-leading-order QCD analysis to perform a simultaneous determination of parton distribution functions of the proton and the strong coupling, resulting in a value of $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017~\text{(experimental/fit)}$${}^{+0.0006}_{-0.0007}~\text{(model/parameterisation)}$${}^{+0.0006}_{-0.0004}~\text{(scale)}$, whose accuracy is improved compared to similar measurements. In addition, the running of the strong coupling is demonstrated using data obtained at different scales.

6 data tables

<b>Note: in the paper, uncertainties are given in percent. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Double-differential inclusive-jet cross sections, $\sigma$. Also listed are the unfolding uncertainty $\delta_\text{unf}$, the sum of the uncorrelated systematic uncertainties $\delta_\text{uncor}$ and the correlated systematic uncertainties associated with the jet-energy scale $\delta_\text{JES}$, the MC model $\delta_\text{model}$, the relative normalisation of the background from unmatched detector-level jets $\delta_\text{fake}$, the relative normalisation of the background from low-$Q^2$ DIS events $\delta_\text{Low-$Q^2$}$, the $(E-p_\text{Z})$-cut boundaries $\delta_{E-p_\text{Z}}$, the track-matching-efficiency correction $\delta_\text{TME}$. Uncertainties for which a single number is listed should be taken as symmetric in the other direction. Not listed explicitly is the luminosity uncertainty of $1.9\%$, which is fully correlated across all points. The last four columns show the QED Born-level correction $c_\text{QED}$ that has been applied to the data as well as the $Z$, $c_Z$, and hadronisation correction $c_\text{Had}$ and associated uncertainty that need to be applied to the theory predictions.

<b>Note: in the paper, uncertainties are given in percent. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Breakdown of the uncorrelated uncertainty $\delta_\text{uncor}$ from Table 1. Shown are the uncertainties associated with the reweighting of the MC models ($\delta_\text{rew.}$), the electron-energy scale ($\delta_\text{EES}$), the electron-finding algorithm ($\delta_\text{EM}$), the electron calibration ($\delta_\text{EL}$), the variation of the $p_{T,\text{lab}}$ cut of the jets ($\delta_{p_T}$), the variation of the electron-track momentum-cut boundaries ($\delta_\text{trk.}$), the variation of the $p_T/\sqrt{E_T}$-cut boundaries ($\delta_\text{bal.}$), the variation of the $Z_\text{vertex}$-cut boundaries ($\delta_\text{vtx.}$), the variation of the $R_\text{RCAL}$-cut boundaries ($\delta_\text{rad.}$), the variation of the electron-track distance-cut boundaries ($\delta_\text{DCA}$), the relative normalisation of the background from photoproduction events ($\delta_\text{PHP}$), the polarisation correction ($\delta_\text{pol.}$), the FLT track-veto-efficiency correction ($\delta_\text{FLT}$) and the correction to QED Born-level ($\delta_\text{QED}$). For the asymmetric uncertainties, the upper number corresponds to the upward variation of the corresponding parameter and the lower number corresponds to the downward variation.

Correlation matrix of the unfolding uncertainty within the inclusive-jet cross-section measurement. Correlations are given in percent.

More…

Production of ${\rm K}^{0}_{\rm{S}}$, $\Lambda$ ($\bar{\Lambda}$), $\Xi^{\pm}$ and $\Omega^{\pm}$ in jets and in the underlying event in pp and p$-$Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 136, 2023.
Inspire Record 2182725 DOI 10.17182/hepdata.139083

The production of strange hadrons (K$^{0}_{\rm S}$, $\Lambda$, $\Xi^{\pm}$, and $\Omega^{\pm}$), baryon-to-meson ratios ($\Lambda/{\rm K}^0_{\rm S}$, $\Xi/{\rm K}^0_{\rm S }$, and $\Omega/{\rm K}^0_{\rm S}$), and baryon-to-baryon ratios ($\Xi/\Lambda$, $\Omega/\Lambda$, and $\Omega/\Xi$) associated with jets and the underlying event were measured as a function of transverse momentum ($p_{\rm T}$) in pp collisions at $\sqrt{s} = 13$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, $\Xi^{\pm}$ and $\Omega^{\pm}$, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p-Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadron $p_{\rm T}$ (0.6$-$6 GeV/$c$). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with PYTHIA 8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadron $p_{\rm T}$ region. The maximum deviation is observed for $\Xi^{\pm}$ and $\Omega^{\pm}$, which reaches a factor of about six. In p-Pb collisions, there is no significant event-multiplicity dependence for particle production in jets, in contrast to what is observed in the underlying event. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.

44 data tables

$p_{\rm T}$-differential density of inclusive ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in pp collisions at $\sqrt{s} = 13$ TeV.

$p_{\rm T}$-differential densities of ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in jets and the underlying event in pp collisions at $\sqrt{s} = 13$ TeV.

$p_{\rm T}$-differential density of inclusive $\Xi^{\pm}$ in pp collisions at $\sqrt{s} = 13$ TeV.

More…

Azimuthal correlations in Z+jets events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 722, 2023.
Inspire Record 2172990 DOI 10.17182/hepdata.133278

The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.

15 data tables

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $p_T<10$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $10<p_T<30$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $30<p_T<50$ GeV

More…

Measurements of jet multiplicity and jet transverse momentum in multijet events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 742, 2023.
Inspire Record 2170533 DOI 10.17182/hepdata.133279

Multijet events at large transverse momentum ($p_\mathrm{T}$) are measured at $\sqrt{s}$ = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with $p_\mathrm{T}$$>$ 50 GeV that are produced in association with a high-$p_\mathrm{T}$ dijet system is measured in various ranges of the $p_\mathrm{T}$ of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $\Delta\phi_{1,2}$ between the two highest $p_\mathrm{T}$ jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $p_\mathrm{T}$ jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.

17 data tables

Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.

Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.

Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.

More…

Measurement of the production of charm jets tagged with ${\rm D^0}$ mesons in pp collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 133, 2023.
Inspire Record 2070667 DOI 10.17182/hepdata.134031

The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5<p_{\rm T;chjet}<50$ GeV/$c$, pseudorapidity $|\eta_{\rm jet}| <0.9-R$, and with the jet resolution parameters $R$ = 0.2, 0.4, 0.6. The distribution of the jet momentum fraction carried by a ${\rm D^0}$ meson along the jet axis ($z^{\rm ch}_{||}$) was measured in the range $0.4 < z^{\rm ch}_{||} < 1.0$ in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low $p_{\rm T;chjet}$. Measurements were also done for $R = 0.3$ at $\sqrt{s}$ = 5.02 TeV and are shown along with their comparisons to theoretical predictions in an appendix to this paper.

11 data tables

$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.

$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.

Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.

More…

Production of $\Lambda$ and ${\rm K}^{0}_{\rm S}$ in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5$ TeV and pp collisions at $\sqrt{s} = 7$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136984, 2022.
Inspire Record 2048607 DOI 10.17182/hepdata.129068

The production of $\Lambda$ baryons and ${\rm K}^{0}_{\rm S}$ mesons (${\rm V}^{0}$ particles) was measured in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and pp collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum ($p_{\rm T}$) in high multiplicity pp and p-Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-$k_{\rm T}$ algorithm using charged particles. The production of strange particles associated with jets $p_{\rm T,\;jet}^{\rm ch}>10$ and $p_{\rm T,\;jet}^{\rm ch}>20$ GeV/$c$ in p-Pb collisions, and with jet $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in pp collisions is reported as a function of $p_{\rm T}$. Its dependence on angular distance from the jet axis, $R({\rm V}^{0},\;{\rm jet})$, for jets with $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in p-Pb collisions is reported as well. The $p_{\rm T}$-differential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the ${\rm V}^{0}$ particles in the underlying event is found to be larger than the density in the minimum bias events. The $\Lambda/{\rm K}^{0}_{\rm S}$ ratio associated with jets in p-Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate $p_{\rm T}$ often referred to as "baryon anomaly" in the inclusive measurements.

11 data tables

$p_{\rm T}$-differential density of inclusive ${\rm V}^{0}$ particles in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential density of ${\rm V}^{0}$ particles in underlying events (perp. cone) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential densities of ${\rm V}^{0}$ particles selected with $R({\rm V}^{0},{\rm jet}) < 0.4$ and that produced in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

More…

Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…

Measurement of isolated-photon plus two-jet production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 179, 2020.
Inspire Record 1772071 DOI 10.17182/hepdata.101751

The dynamics of isolated-photon plus two-jet production in $pp$ collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma+jet+jet$. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as the next-to-leading-order QCD predictions from SHERPA are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.

27 data tables

Measured cross sections for isolated-photon plus two-jet production as functions of $E_{\mathrm{T}}^{\gamma}$ for the total phase-space. The predictions from Sherpa NLO are also included.

Measured cross sections for isolated-photon plus two-jet production as functions of $p_{\mathrm{T}}^{\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.

Measured cross sections for isolated-photon plus two-jet production as functions of $|y^{\textrm{jet}}|$ for the total phase-space. The predictions from Sherpa NLO are also included.

More…

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 790 (2019) 108-128, 2019.
Inspire Record 1673184 DOI 10.17182/hepdata.84819

Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.

35 data tables

The ⟨TAA⟩ and ⟨Npart⟩ values and their uncertainties in each centrality bin.

No description provided.

No description provided.

More…

Measurement of the cross section for isolated-photon plus jet production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 780 (2018) 578-602, 2018.
Inspire Record 1645627 DOI 10.17182/hepdata.78401

The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-$k_t$ algorithm with radius parameter $R=0.4$ and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.

5 data tables

Measured cross sections for isolated-photon plus jet production as a function of $E_{\rm T}^{\gamma}$.

Measured cross sections for isolated-photon plus jet production as a function of $p_{\rm T}^{\rm jet-lead}$.

Measured cross sections for isolated-photon plus jet production as a function of $\Delta\phi^{\rm \gamma-jet\ lead}$.

More…

Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 126, 2018.
Inspire Record 1635274 DOI 10.17182/hepdata.80608

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 36.1 fb${}^{-1}$ at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons ($e$ or $\mu$). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.

33 data tables

The measured leading jet $p_{T}$ distribution in the W($\rightarrow \mu \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

The measured $E_{T}^{miss}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

The measured leading jet $p_{T}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

More…

Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

86 data tables

Cross section for the production of W bosons for different inclusive jet multiplicities.

Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.

Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.

More…

Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 295-317, 2018.
Inspire Record 1632756 DOI 10.17182/hepdata.79163

This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

12 data tables

Measured fiducial integrated $\gamma+b$ and $\gamma+c$ cross sections for $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $|\eta^\gamma|<1.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $1.56<|\eta^\gamma|<2.37$.

More…

Measurement of internal structure of jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 379, 2017.
Inspire Record 1511869 DOI 10.17182/hepdata.77789

The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

81 data tables

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.

More…

High-$E_{\rm T}$ isolated-photon plus jets production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nucl.Phys.B 918 (2017) 257-316, 2017.
Inspire Record 1499475 DOI 10.17182/hepdata.79948

The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

35 data tables

Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.

Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.

Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.

More…

Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

10 data tables

Data simulation comparison (with arbitrary normalization). Di-jet invariant mass.

Data simulation comparison (with arbitrary normalization). Difference between jet pseudorapidities.

Data simulation comparison (with arbitrary normalization). Difference between jet azimuthal angles.

More…

Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\sqrt{s}=$ 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 765 (2017) 132-153, 2017.
Inspire Record 1487726 DOI 10.17182/hepdata.74701

The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

5 data tables

Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.

Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.

Breakdown of uncertainties in percent.

More…

Study of hard double-parton scattering in four-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2016) 110, 2016.
Inspire Record 1479760 DOI 10.17182/hepdata.73908

Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb$^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum $p_{\mathrm{T}} \geq 20$ GeV and pseudorapidity $\eta \leq 4.4$, and at least one having $p_{\mathrm{T}} \geq 42.5$ GeV, the contribution of hard double-parton scattering is estimated to be $f_{\mathrm{DPS}} = 0.092 ^{+0.005}_{-0.011} (\mathrm{stat.}) ^{+0.033}_{-0.037} (\mathrm{syst.})$. After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective overlap area between the interacting protons, $\sigma_{\mathrm{eff}}$, was determined to be $\sigma_{\mathrm{eff}} = 14.9 ^{+1.2}_{-1.0} (\mathrm{stat.}) ^{+5.1}_{-3.8} (\mathrm{syst.})$ mb. This result is consistent within the quoted uncertainties with previous measurements of $\sigma_{\mathrm{eff}}$, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to $21^{+7}_{-6}$% of the total inelastic cross-section measured at $\sqrt{s} = 7$ TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

21 data tables

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta\phi_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{12}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

More…

Measurement of the $b\overline{b}$ dijet cross section in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 670, 2016.
Inspire Record 1478355 DOI 10.17182/hepdata.75316

The dijet production cross section for jets containing a $b$-hadron ($b$-jets) has been measured in proton-proton collisions with a centre-of-mass energy of $\sqrt{s} = 7$ TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2 fb$^{-1}$. The cross section is measured for events with two identified $b$-jets with a transverse momentum $p_T > 20$ GeV and a minimum separation in the $\eta$-$\phi$ plane of $\Delta R = 0.4$. At least one of the jets in the event is required to have $p_T > 270$ GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the $b$-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization.

6 data tables

Results for the m_bb distribution. Statistical and systematic uncertainties are quoted.

Results for the DeltaPhi distribution. Statistical and systematic uncertainties are quoted.

Results for the y* distribution. Statistical and systematic uncertainties are quoted.

More…

Search for scalar leptoquarks in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
New J.Phys. 18 (2016) 093016, 2016.
Inspire Record 1462258 DOI 10.17182/hepdata.73322

An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in $pp$ collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider, have been considered. An integrated luminosity of 3.2 fb$^{-1}$, corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 GeV and 1050 GeV (1160 GeV and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.

4 data tables

Normalisation factors for the main backgrounds obtained from the combined fit in each of the channels. The total uncertainty is given.

Search for the first generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

Search for the second generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

More…

Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at $\sqrt{s} = 2.76$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 10-28, 2016.
Inspire Record 1407478 DOI 10.17182/hepdata.71195

The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb$^{-1}$ of $\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.

34 data tables

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +2.1 < eta^dijet < +2.8.

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +1.2 < eta^dijet < +2.1.

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +0.8 < eta^dijet < +1.2.

More…

Dijet production in $\sqrt{s}=7$ TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

46 data tables

Measured differential four-jet cross section for R=0.4 jets, in bins of pT1, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All uncertainties are given in %. The first uncertainty quoted is due to the number of data events. DSYS:mcstat is the statistical uncertainty due to the number of MC simulation events. The other columns, denoted with DSYS, correspond to the experimental systematic uncertainties arising from JES, JER, unfolding and luminosity, respectively.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT2, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT3, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

More…

Measurements of fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 11, 2016.
Inspire Record 1390114 DOI 10.17182/hepdata.72856

Fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets are reported, using an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for $t\bar{t}$ events with at least one additional $b$-jet is measured to be 950 $\pm$ 70 (stat.) $^{+240}_{-190}$ (syst.) fb in the lepton-plus-jets channel and 50 $\pm$ 10 (stat.) $^{+15}_{-10}$ (syst.) fb in the $e \mu$ channel. The cross-section times branching ratio for events with at least two additional $b$-jets is measured to be 19.3 $\pm$ 3.5 (stat.) $\pm$ 5.7 (syst.) fb in the dilepton channel ($e \mu$,\,$\mu\mu$, and \,$ee$) using a method based on tight selection criteria, and 13.5 $\pm$ 3.3 (stat.) $\pm$ 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 $\pm$ 0.33 (stat.) $\pm$ 0.28 (syst.)\% for the ratio of $t\bar{t}$ production with two additional $b$-jets to $t\bar{t}$ production with any two additional jets. All measurements are in good agreement with recent theory predictions.

8 data tables

Measured fiducial cross section for $t\bar{t}$ events with exactly one lepton and at least five jets, of which at least three are b-jets. The definition of the cross-section includes $t\bar{t}+Z / H$ events that pass the fiducial requirements.

Measured fiducial cross section for $t\bar{t}$ events with two leptons and at least three b-jets. The definition of the cross-section includes $t\bar{t}+Z / H$ events that pass the fiducial requirements.

Measured fiducial cross section for $t\bar{t}$ events with two leptons and at least four b-jets. The definition of the cross-section includes $t\bar{t}+Z / H$ events that pass the fiducial requirements.

More…

Measurement of transverse energy-energy correlations in multi-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector and determination of the strong coupling constant $\alpha_{\mathrm{s}}(m_Z)$

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 750 (2015) 427-447, 2015.
Inspire Record 1387176 DOI 10.17182/hepdata.69306

High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy-energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 $\mathrm{pb}^{-1}$. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the $Z$ boson mass is determined to be $\alpha_{\mathrm{s}}(m_Z) = 0.1173 \pm 0.0010 \mbox{ (exp.) }^{+0.0065}_{-0.0026} \mbox{ (theo.)}$.

3 data tables

Values of the transverse energy-energy correlation function (TEEC).

Values of the asymmetry on the transverse energy-energy correlation function (ATEEC).

Values of the non-perturbative correction factors for the TEEC function derived using Pythia 6 AUET2B.


Production of exclusive dijets in diffractive deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 76 (2016) 16, 2016.
Inspire Record 1372086 DOI 10.17182/hepdata.73738

Production of exclusive dijets in diffractive deep inelastic $e^\pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $\gamma^*-p$ centre-of-mass energies in the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $\beta$ and $\phi$, where $\beta=x/x_{\rm I\!P}$, $x$ is the Bjorken variable and $x_{\rm I\!P}$ is the proton fractional longitudinal momentum loss. The angle $\phi$ is defined by the $\gamma^*-$dijet plane and the $\gamma^*-e^\pm$ plane in the rest frame of the diffractive final state. The $\phi$ cross section is measured in bins of $\beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

3 data tables

Differential cross-section $d\sigma/d\beta$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV^2$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation also given in the table.

Differential cross-section $d\sigma/d\phi$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation given in the table.

Results of the fit to the cross-section $d\sigma/d\phi$ in bins of $\beta$. The fitted function is proportional to $(1+A \rm{cos}2\phi)$. The uncertainty includes both statistical and systematical contributions (see text of paper).


Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 221802, 2015.
Inspire Record 1357594 DOI 10.17182/hepdata.68404

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s}=8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95 % CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

7 data tables

mjj region 600 - 800 GeV. The observed systematic is the experimental uncertainty, while the SM prediction systematic is the theoretical uncertainty.

mjj region 800 - 1200 GeV. The observed systematic is the experimental uncertainty, while the SM prediction systematic is the theoretical uncertainty.

mjj region 1200 - 1600 GeV. The observed systematic is the experimental uncertainty, while the SM prediction systematic is the theoretical uncertainty.

More…

Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2015) 032, 2015.
Inspire Record 1357199 DOI 10.17182/hepdata.67127

We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at $\sqrt{s} = 8$ TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

13 data tables

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 3$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 4$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 5$. The total uncertainty is obtained by adding the three uncertainties linearly.

More…

Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 299, 2015.
Inspire Record 1343107 DOI 10.17182/hepdata.68783

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with $p_T > 120$ GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between $E_T^{miss} > 150$ GeV and $E_T^{miss} > 700$ GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

45 data tables

Distributions of the measured transverse mass distribution of the identified muon in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured $E_{T}^{miss}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured leading jet $p_{T}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

More…

Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 743 (2015) 6-14, 2015.
Inspire Record 1334689 DOI 10.17182/hepdata.73191

We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

3 data tables

The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.


Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 748 (2015) 392-413, 2015.
Inspire Record 1334140 DOI 10.17182/hepdata.67349

Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.

171 data tables

The $R_{\mathrm{coll}}$ and $T_{p\mathrm{A}}$ values and their uncertainties in each centrality bin.

Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).

Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).

More…

Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 072302, 2015.
Inspire Record 1326911 DOI 10.17182/hepdata.66021

Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.

46 data tables

The $\langle T_{\mathrm{AA}} \rangle $ and $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties in each centrality bin.

No description provided.

No description provided.

More…

Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 228, 2015.
Inspire Record 1326641 DOI 10.17182/hepdata.71311

Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass $(m_{jjj})$, in bins of the sum of the absolute rapidity separations between the three leading jets $(|Y^\ast|)$. Invariant masses extending up to 5 TeV are reached for $8< |Y^\ast| < 10$. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb$^{-1}$. Jets are identified using the anti-$k_t$ algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

10 data tables

Measured three-jet double-differential cross sections as a function of M(3JET) in |Y*|<2 for anti-kt R=0.4 jets. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured three-jet double-differential cross sections as a function of M(3JET) in 2<=|Y*|<4 for anti-kt R=0.4 jets. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured three-jet double-differential cross sections as a function of M(3JET) in 4<=|Y*|<6 for anti-kt R=0.4 jets. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

More…

Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s}=7$ TeV using 4.5 fb$^{-1}$ of data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 02 (2015) 153, 2015.
Inspire Record 1325553 DOI 10.17182/hepdata.69343

The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-$k_t$ algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.

12 data tables

Measured double-differential inclusive-jet cross section for the range 0.0 <= |y| < 0.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 0.5 <= |y| < 1.0 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 1.0 <= |y| < 1.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

More…

Measurement of the $WW+WZ$ cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum, and two jets with the ATLAS detector at $\sqrt{\rm{s}} = 7$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 049, 2015.
Inspire Record 1324374 DOI 10.17182/hepdata.66704

The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.

1 data table

The total and fiducial cross sections for the production of W(LEPTON NU) W(JET JET) or W(LEPTON NU) Z(JET JET). The cross sections are the sum of the WW and WZ processes.


A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3168, 2014.
Inspire Record 1312627 DOI 10.17182/hepdata.66682

The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton-proton collisions at $\sqrt{s}$ = 7 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum $p_T$ > 30 GeV and jet rapidity $|y|$ < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

20 data tables

Distribution of inclusive jet multiplicity.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

More…

Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in $pp$ collisions at $\sqrt{s}$ = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3117, 2014.
Inspire Record 1307243 DOI 10.17182/hepdata.66091

Additional jet activity in dijet events is measured using $pp$ collisions at ATLAS at a centre-of-mass energy of 7 TeV, for jets reconstructed using the anti-kt algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijets. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the mean transverse momentum of the dijets and of the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijets. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWHEG+PYTHIA 8 and HEJ+ARIADNE are found to provide the best agreement with the data.These measurements use the full data sample collected with the ATLAS detector in 7 TeV $pp$ collisions at the LHC and correspond to integrated luminosities of 36.1 pb$^-1$ and 4.5 fb$^-1$ for data collected during 2010 and 2011 respectively.

40 data tables

Gap fraction as a function of leading dijet rapidity separation.

Gap fraction as a function of leading dijet scalar mean pT in GeV.

Mean number of jets in rapidity interval as a function of leading dijet rapidity separation.

More…

Measurement of differential production cross-sections for a $Z$ boson in association with $b$-jets in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2014) 141, 2014.
Inspire Record 1306294 DOI 10.17182/hepdata.65389

Measurements of differential production cross-sections of a $Z$ boson in association with $b$-jets in $pp$ collisions at $\sqrt{s}=7$ TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a $Z$ boson decaying into an electron or muon pair, and containing $b$-jets. For events with at least one $b$-jet, the cross-section is presented as a function of the $Z$ boson transverse momentum and rapidity, together with the inclusive $b$-jet cross-section as a function of $b$-jet transverse momentum, rapidity and angular separations between the $b$-jet and the $Z$ boson. For events with at least two $b$-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum $b$-jets, and as a function of the $Z$ boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

28 data tables

Integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

Breakdown of systematic uncertainties (in %) for the integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

The inclusive $b$-jet cross-section $\sigma(Zb)\times N_{b\text{-jet}}$ as a function of $b$-jet $p_T$ together with the corresponding non-perturbative corrections.

More…

Search for new phenomena in the dijet mass distribution using $p-p$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 91 (2015) 052007, 2015.
Inspire Record 1305096 DOI 10.17182/hepdata.66572

Dijet events produced in LHC proton--proton collisions at a center-of-mass energy $\sqrt{s}=8$ TeV are studied with the ATLAS detector using the full 2012 data set, with an integrated luminosity of 20.3 fb$^{-1}$. Dijet masses up to about 4.5 TeV are probed. No resonance-like features are observed in the dijet mass spectrum. Limits on the cross section times acceptance are set at the 95% credibility level for various hypotheses of new phenomena in terms of mass or energy scale, as appropriate. This analysis excludes excited quarks with a mass below 4.09 TeV, color-octet scalars with a mass below 2.72 TeV, heavy $W'$ bosons with a mass below 2.45 TeV, chiral ${W^\ast}$ bosons with a mass below 1.75 TeV, and quantum black holes with six extra space-time dimensions with threshold mass below 5.82 TeV.

14 data tables

The reconstructed dijet mass distribution (observed) fitted with a smooth functional form (expected) of 4-parameter or 5-parameter.

Dijet mass resolution obtained from fully simulated PYTHIA QCD Monte Carlo PYTHIA 8.175 [43], with the AU2 tune obtained from ATLAS data [45].

Total cross sections, branching ratios in qg only and acceptances for qg, qgamma, qW, qZ decays (A) for the q* model.

More…

Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 020, 2015.
Inspire Record 1304688 DOI 10.17182/hepdata.18665

The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.

9 data tables

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 25 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 40 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 60 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

More…

Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb$^{-1}$ of $\sqrt{s}$=8 TeV proton-proton collision data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 103, 2014.
Inspire Record 1304458 DOI 10.17182/hepdata.65525

A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale $\Lambda$ below 63 TeV are excluded, independently of tan$\beta$. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded.

113 data tables

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of HT after the MTtau requirement for the 1-tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau 'Tight'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

More…

Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

80 data tables

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.

D(z) distribution for R=0.4 jets.

More…

Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 74 (2014) 2965, 2014.
Inspire Record 1298811 DOI 10.17182/hepdata.65229

Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37/pb of proton-proton collision data collected at a centre-of-mass energy of 7 TeV. Charged-particle mean $p_T$ and densities of all-particle $E_T$ and charged-particle multiplicity and $p_T$ have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 GeV to 800 GeV. The correlation of charged-particle mean $p_T$ with charged-particle multiplicity is also studied, and the $E_T$ densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beam-remnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisons to the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.

36 data tables

Transverse $\langle \sum p_T^\text{ch} / \delta\eta\,\delta\phi \rangle$ vs. $p_T^\text{lead}$ in $|\eta| < 2.5$ in incl jet / excl dijet events.

Trans-max $\langle \sum p_T^\text{ch} / \delta\eta\,\delta\phi \rangle$ vs. $p_T^\text{lead}$ in $|\eta| < 2.5$ in incl jet / excl dijet events.

Trans-min $\langle \sum p_T^\text{ch} / \delta\eta\,\delta\phi \rangle$ vs. $p_T^\text{lead}$ in $|\eta| < 2.5$ in incl jet / excl dijet events.

More…

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using $\sqrt{s}=8$ TeV proton--proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 176, 2014.
Inspire Record 1298722 DOI 10.17182/hepdata.64973

A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.

195 data tables

The effective mass distribution in 2-jet loose signal region.

The effective mass distribution in 2-jet medium and tight signal regions.

The effective mass distribution in 2-jet (W) signal region.

More…

Further studies of the photoproduction of isolated photons with a jet at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 08 (2014) 023, 2014.
Inspire Record 1298390 DOI 10.17182/hepdata.64205

In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_\gamma^{\mathrm{meas}}$, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{\gamma} < 15$ GeV and $-0.7 < \eta^{\gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{\rm jet} < 35$ GeV and $-1.5 < \eta^{\rm jet} < 1.8$, for an integrated luminosity of 374 $\mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.

7 data tables

Differential cross-section D(SIG)/DET(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

Differential cross-section D(SIG)/DETARAP(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

Differential cross-section D(SIG)/DET(JET) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

More…

Evidence for Electroweak Production of $W^{\pm}W^{\pm}jj$ in $pp$ Collisions at $\sqrt{s}=8$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 113 (2014) 141803, 2014.
Inspire Record 1298023 DOI 10.17182/hepdata.64182

This Letter presents the first study of $W^{\pm}W^{\pm}jj$, same-electric-charge diboson production in association with two jets, using 20.3 fb$^{-1}$ of proton--proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons ($e^\pm e^\pm$, $e^\pm \mu^\pm$, and $\mu^\pm \mu^\pm$) and two or more jets are analyzed. Production cross sections are measured in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. First evidence for $W^{\pm}W^{\pm}jj$ production and electroweak-only $W^{\pm}W^{\pm}jj$ production is observed with a significance of $4.5$ and $3.6$ standard deviations respectively. The measured production cross sections are in agreement with Standard Model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings.

1 data table

The fiducial cross sections for the production of W+- W+- JET JET in the inclusive and VBS regions.


Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

7 data tables

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

More…

Measurement of the differential $\gamma+2~b$-jet cross section and the ratio $\sigma$($\gamma+2~b$-jets)/$\sigma$($\gamma+b$-jet) in $p\bar{p}$ collisions at $\sqrt{s}$=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 737 (2014) 357-365, 2014.
Inspire Record 1296263 DOI 10.17182/hepdata.64151

We present the first measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the production of an isolated photon in association with at least two $b$-quark jets. The measurements consider photons with rapidities $|y^\gamma| < 1.0$ and transverse momenta $30 < p_{T}^{\gamma} < 200$~\GeV. The $b$-quark jets are required to have $p_T^{jet}>15$ GeV and $| y^{jet}| < 1.5$. The ratio of differential production cross sections for $\gamma+2~b$-jets to $\gamma+b$-jet as a function of $p_{T}^{\gamma}$ is also presented. The results are based on the proton-antiproton collision data at $\sqrt{s}=$1.96~\TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as well as predictions based on the $k_{T}$-factorization approach and those from the SHERPA and PYTHIA Monte Carlo event generators.

3 data tables

The differential GAMMA+2BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The differential GAMMA+BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The SIG(GAMMA 2BJET)/SIG(GAMMA BJET) cross section ratio in bins of PT(GAMMA).


Measurement of the forward-backward asymmetry in the distribution of leptons in $t\bar{t}$ events in the lepton+jets channel

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 90 (2014) 072001, 2014.
Inspire Record 1283842 DOI 10.17182/hepdata.64673

We present measurements of the forward-backward asymmetry in the angular distribution of leptons from decays of top quarks and antiquarks produced in proton-antiproton collisions. We consider the final state containing a lepton and at least three jets. The entire sample of data collected by the D0 experiment during Run II of the Fermilab Tevatron Collider, corresponding to 9.7 inverse fb of integrated luminosity, is used. The asymmetry measured for reconstructed leptons is $A_{FB}^l = \big(2.9 \pm 2.1(stat.) ^{+1.5}_{-1.7}(syst.) \big)$%. When corrected for efficiency and resolution effects within the lepton rapidity coverage of $|y_l|<1.5$, the asymmetry is found to be $A_{FB}^l = \big(4.2 \pm 2.3(stat.) ^{+1.7}_{-2.0}(syst.) \big)$%. Combination with the asymmetry measured in the dilepton final state yields $A_{FB}^l = \big(4.2 \pm 2.0(stat.) \pm 1.4(syst.) \big)$%. We examine the dependence of $A_{FB}^l$ on the transverse momentum and rapidity of the lepton. The results are in agreement with predictions from the next-to-leading-order QCD generator \mcatnlo, which predicts an asymmetry of $A_{FB}^l = 2.0$% for $|y_l|<1.5$.

14 data tables

Observed ASYMFB(LEPTON) as a function of PT(LEPTON) at reconstruction level.

Observed production-level ASYMFB(LEPTON) as a function of PT(LEPTON).

Observed production-level ASYMFB(LEPTON) as a function of ABS(YRAP(LEPTON)).

More…