We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.
CORRECTIONS FOR TWO-PHOTON PROCESSES, TAU HEAVY LEPTON PRODUCTION AND INITIAL STATE RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 31.57 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
Backward production of ω (1670) is observed in the reactions K − p→ φ + φ − ω 0 Λ 0 and K − p→ φ + φ − φ 0 φ 0 for | U ' Λ |<1.0 GeV 2 . The cross section for the ω (1670) → φ + φ − ω 0 decay mode is 1.90±0.35 μ b for 8.25 GeV/ c incident K − . Evidence is presented for the importance of the sequential decay, ω (1670) → B φ → ωφφ with a branching ratio ω (1670) → B φ /all ω (1670) → ωφφ =1.0± 0.25 0.00 .
No description provided.
Two (Δ(1238)ππ) enhancements at 1.93 and 2.12 GeV have been observed in an analysis of the invariant-mass spectra of Δ++(1238)π-π0 and Δ++(1238)π-π- from π-p→π-pπ+π-π0 events in 4.5 GeV/c π-p interactions. An enhancement at 2.2 GeV is also seen with a dominant branching to the Δ(1238)ρ system. The 1.93 and 2.12 enhancements seem to be produced mainly through a ρ-meson exchange process. The 2.2 GeV enhancement seems to be produced diffractively and is considered to correspond to theG17(2190) state.
No description provided.
EXPONENTIAL FITS TO T-DISTRIBUTIONS.
Charged-current neutrino and antineutrino interaction cross sections have been measured in the energy range 10 to 50 GeV using BEBC filled with a neon-hydrogen mixture. At these energies, σ/E was measured to be (0.73±0.08) 10−38 cm2/GeV per nucleon for neutrinos and (0.32±0.06) 10−38 cm2/GeV per nucleon for antineutrinos.
Axis error includes +- 9/9 contribution (NEUTRAL CURRENT EVENTS AND NEUTRAL HADRON INDUCED REACTIONS, LOSSES OF EVENTS WITH ONLY ONE VISIBLE CHARGED PARTICLE).
Axis error includes +- 9/9 contribution (NEUTRAL CURRENT EVENTS AND NEUTRAL HADRON INDUCED REACTIONS, LOSSES OF EVENTS WITH ONLY ONE VISIBLE CHARGED PARTICLE).
This paper reports on the first results of the study of e+e− collisions at s=27.4 GeV and s=27.7 GeV at PETRA, using the 4π-sr electromagnetic and calorimetric detector MARK-J. We obtain an average R=σ(e+e−→hadrons)σ(e+e−→μ+μ−)=3.8±0.3 (statistical)±0.6 (systematic) and a relative R=1.0±0.2 between the two energies. The R values, the measured thrust distribution, and average spherocity show no evidence for the production of new quark flavors.
THE RELATIVE VALUE OF R BETWEEN THESE TWO ENERGIES IS 1.0 +- 0.2.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17 AND 27 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
We have measured the polarization of the Λ hyperon produced in the reaction π−p→K0Λ at 3 and 5 GeV/c, for four-momentum transfers t′ out to 1.6 GeV2, by observing the parity-violating decay Λ→pπ−. With an increase in statistical power by a factor of 3 to 4 over the best previous experiments in this energy range, we confirm earlier observations that the polarization is small and positive below t′=0.4 GeV2, becoming large and positive for larger values of t′. In particular, at 5 GeV/c for all t′ between 0.8 and 1.6 GeV2 the polarization is consistent with a value of - 1.
No description provided.
No description provided.
We have measured the production of massive muon pairs in hadronic collisions at the CERN Super Proton Synchrotron (SPS). A clear signal of production of the ϒ resonance by π + of 200 GeV/ c and π − of 200 and 280 GeV/ c on a platinum target is observed.
No description provided.
No description provided.
Hadron jets produced in e + e − annihilation between 13 GeV and 31.6 GeV in c.m. at PETRA are analyzed. The transverse momentum of the jets is found to increase strongly with c.m. energy. The broadening of the jets is not uniform in azimuthal angle around the quark direction but tends to yield planar events with large and growing transverse momenta in the plane and smaller transverse momenta normal to the plane. The simple q q collinear jet picture is ruled out. The observation of planar events shows that there are three basic particles in the final state. Indeed, several events with three well-separated jets of hadrons are observed at the highest energies. This occurs naturally when the outgoing quark radiates a hard noncollinear gluon, i.e., e + e − → q q g with the quarks and the gluons fragmenting into hadrons with limited transverse momenta.
NORMALIZED TRANSVERSE MOMENTUM DISTRIBUTION WITH RESPECT TO THE SPHERICITY AXIS AT 13, 17, AND 27.4 TO 31.6 GEV.
We report the analysis of the spatial energy distribution of data for e+e−→hadrons obtained with the MARK-J detector at PETRA. We define the quantity "oblateness" to describe the flat shape of the energy configuration and the three-jet structure which is unambiguously observed for the first time. Our data can be explained by quantum chromodynamic predictions for the production of quark-antiquark pairs accompanied by hard noncollinear gluons.
AVERAGE OBLATENESS AS A FUNCTION OF SQRT(S) AND OF THRUST AND OBLATENESS DISTRIBUTION (1/N)*DN/DOBLATENESS AT 17 AND 27.4 TO 31.6 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
Measurements of the reactions e++e−→e++e−, μ++μ−, and τ++τ− at PETRA energies (s12=13,17,27.4,30 and 31.6 GeV) are reported. The results show that these reactions agree well with the predictions of quantum electrodynamics thus determining that all the known charged leptons are pointlike particles to a distance < × 10−16 cm.
No description provided.
No description provided.