Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

4 data tables match query

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

6 data tables match query

$J/\psi$ mean transversee momentum vs collision energy. $p_{\rm T}$ integration ranges are 0<$p_{\rm T}$<8 GeV/$c$ at $\sqrt{s}$ =2700 GeV, 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =5020, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =7000, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =8000 and 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =13000.

$J/\psi$ mean transversee momentum square vs collision energy. $p_{\rm T}$ integration ranges are 0<$p_{\rm T}$<8 GeV/$c$ at $\sqrt{s}$ =2700 GeV, 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =5020, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =7000, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =8000 and 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =13000.

$\psi(2S)$ mean transversee momentum vs collision energy. $p_{\rm T}$ integration ranges are 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =7000, 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =8000 and 0<$p_{\rm T}$<16 GeV/$c$ at $\sqrt{s}$ =13000.

More…