Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($\ell$ = e or $\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X) $\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X) $\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
The Large Hadron Collider at CERN, delivering proton-proton collisions at much higher energies and far higher luminosities than previous machines, has enabled a comprehensive programme of measurements of the standard model (SM) processes by the CMS experiment. These unprecedented capabilities facilitate precise measurements of the properties of a wide array of processes, the most fundamental being cross sections. The discovery of the Higgs boson and the measurement of its mass became the keystone of the SM. Knowledge of the mass of the Higgs boson allows precision comparisons of the predictions of the SM with the corresponding measurements. These measurements span the range from one of the most copious SM processes, the total inelastic cross section for proton-proton interactions, to the rarest ones, such as Higgs boson pair production. They cover the production of Higgs bosons, top quarks, single and multibosons, and hadronic jets. Associated parameters, such as coupling constants, are also measured. These cross section measurements can be pictured as a descending stairway, on which the lowest steps represent the rarest processes allowed by the SM, some never seen before.
Cross sections of selected high-energy processes measured by the CMS experiment. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% CL upper limit on the process indicated by the solid line of the same colour.
Summary of production cross section measurements involving top quarks. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour.
Summary of measurements of jet cross sections and electroweak processes in association with jets. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour. Versions of these plots in pdf format with links to the publications can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-23-004/.
The cross sections for inclusive and Mueller-Navelet dijet production are measured as a function of the rapidity separation between the jets in proton-proton collisions at $\sqrt{s} =$ 2.76 TeV for jets with transverse momentum $p_\mathrm{T}$$\gt$ 35 GeV and rapidity $\vert y\vert$$\lt$ 4.7. Various dijet production cross section ratios are also measured. A veto on additional jets with $p_\mathrm{T}$$\gt$ 20 GeV is introduced to improve the sensitivity to the effects of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution. The measurement is compared with the predictions of various Monte Carlo models based on leading-order and next-to-leading-order calculations including the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi leading-logarithm (LL) parton shower as well as the LL BFKL resummation.
Summary of the systematic uncertainties on the cross section dσincl/d∆y.
Summary of the systematic uncertainties on the cross section dσMN/d∆y.
Summary of the systematic uncertainties on the ratio Rincl.
We present the first measurements of femtoscopic correlations between the K$^0_{\rm S}$ and K$^{\rm \pm}$ particles in pp collisions at $\sqrt{s}=7$ TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding solely via the $a_0(980)$ resonance. The extracted kaon source radius and correlation strength parameters for K$^0_{\rm S}$K$^{\rm -}$ are found to be equal within the experimental uncertainties to those for K$^0_{\rm S}$K$^{\rm +}$. Results of the present study are compared with those from identical-kaon femtoscopic studies also performed with pp collisions at $\sqrt{s}=7$ TeV by ALICE and with a K$^0_{\rm S}$K$^{\rm \pm}$ measurement in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. Combined with the Pb-Pb results, our pp analysis is found to be compatible with the interpretation of the $a_0(980)$ having a tetraquark structure instead of that of a diquark.
Raw K0s K+ correlation function for all kT
Raw K0s K+ correlation function for kT < 0.85 GeV/c
Raw K0s K+ correlation function for kT > 0.85 GeV/c
Comprehensive results on the production of unidentified charged particles, $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}$*(892)$^{0}$, $\rm{p}$, $\overline{\rm{p}}$, $\phi$(1020), $\Lambda$, $\overline{\Lambda}$, $\Xi^{-}$, $\overline{\Xi}^{+}$, $\Omega^{-}$ and $\overline{\Omega}^{+}$ hadrons in proton-proton (pp) collisions at $\sqrt{s}$ = 7 TeV at midrapidity ($|y| < 0.5$) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum ($p_{\rm{T}}$) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained $p_{\rm{T}}$ distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.
Transverse momentum spectra of charged particles in V0M I multiplicity class
Transverse momentum spectra of charged particles in V0M II multiplicity class
Transverse momentum spectra of charged particles in V0M III multiplicity class
We present the measurement of a new set of jet shape observables for track-based jets in central Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV. The set of jet shapes includes the first radial moment or angularity, $g$; the momentum dispersion, $p_{\rm T}D$; and the difference between the leading and sub-leading constituent track transverse momentum, $LeSub$. These observables provide complementary information on the jet fragmentation and can constrain different aspects of the theoretical description of jet-medium interactions. The jet shapes were measured for a small resolution parameter $R = 0.2$ and were fully corrected to particle level. The observed jet shape modifications indicate that in-medium fragmentation is harder and more collimated than vacuum fragmentation as obtained by PYTHIA calculations, which were validated with the measurements of the jet shapes in proton-proton collisions at $\sqrt{s} = 7$ TeV. The comparison of the measured distributions to templates for quark and gluon-initiated jets indicates that in-medium fragmentation resembles that of quark jets in vacuum. We further argue that the observed modifications are not consistent with a totally coherent energy loss picture where the jet loses energy as a single colour charge, suggesting that the medium resolves the jet structure at the angular scales probed by our measurements ($R=0.2$). Furthermore, we observe that small-$R$ jets can help to isolate purely energy loss effects from other effects that contribute to the modifications of the jet shower in medium such as the correlated background or medium response.
Fully corrected $g$ distributions in pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$. The results are compared to PYTHIA.
Ratio of fully corrected $g$ distributions pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$ and PYTHIA 8 Tune 4C simulations. The systematic uncertainty of $g$ is propagated to the ratio.
Ratio of fully corrected $g$ distributions pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$ and PYTHIA Perugia 11 simulations. The systematic uncertainty of $g$ is propagated to the ratio.
The first measurement of dielectron ($\mathrm{e}^{+}\mathrm{e}^{-}$) production in central (0$-$10$\%$) Pb-Pb collisions at $\mathbf{\sqrt{{\textit{s}}_{\mathrm{NN}}}}$ = 2.76 TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range $0 < m_{\mathrm{ee}}<3.5\ \mathrm{GeV}/\textit{c}^{2}$. The ratio of data and the cocktail of hadronic contributions without vacuum $\rho^{0}$ is measured in the invariant-mass range $0.15 < m_{\mathrm{ee}}<0.7\ \mathrm{GeV}/\textit{c}^{2}$, where an excess of dielectrons is observed in other experiments, and its value is $1.40 \pm 0.28\ (\mathrm{stat.}) \pm 0.08\ (\mathrm{syst.}) \pm 0.27\ (\mathrm{cocktail})$. The dielectron spectrum measured in the invariant mass range $0 < m_{\mathrm{ee}}<1\ \mathrm{GeV}/\textit{c}^{2}$ is consistent with the predictions from two theoretical model calculations that include thermal dielectron production from both partonic and hadronic phases with in-medium broadened $\rho^{0}$ meson. The fraction of direct virtual photons over inclusive virtual photons is extracted for dielectron pairs with invariant mass $0.1 < m_{\mathrm{ee}}<0.3\ \mathrm{GeV}/\textit{c}^{2}$, and in the transverse-momentum intervals $1<p_{\mathrm{T}, \mathrm{ee}}<2\ \mathrm{GeV}/\textit{c}$ and $2<p_{\mathrm{T}, \mathrm{ee}}<4\ \mathrm{GeV}/\textit{c}$. The measured fraction of virtual direct photons is consistent with the measurement of real direct photons by ALICE and with the expectations from previous dielectron measurements at RHIC within the experimental uncertainties.
Dielectron invariant-mass spectrum measured in central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. The statistical and systematic uncertainties of the data are represented by vertical bars and boxes.
Data-to-cocktail ratio. Statistical uncertainties are represented by vertical bars and systematic uncertainties by boxes.
Dielectron invariant-mass spectrum divided by the hadronic cocktail without the contribution from the vacuum $\rho^{0}$. The statistical and systematic uncertainties of data are represented by vertical bars and boxes.
The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the $e^{+}e^{-}$ pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct photon elliptic flow was extracted in the transverse momentum range $0.9 < p_{\rm T} < 6.2$ GeV/$c$. A comparison to RHIC data shows a similar magnitude of the measured direct-photon elliptic flow. Hydrodynamic and transport model calculations are systematically lower than the data, but are found to be compatible.
Ratio V2{GAMMA,INCLUSIVE,PCM}/V2{GAMMA,INCLUSIVE,COMBINED} as function of $p_\text{T}$, collision centrality 0-20%, for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Ratio V2{GAMMA,INCLUSIVE,PHOS}/V2{GAMMA,INCLUSIVE,COMBINED} as function of $p_\text{T}$, collision centrality 20-40%, for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
V2{GAMMA,DECAY} as function of $p_\text{T}$, collision centrality 0-20%, for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.