Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137531, 2023.
Inspire Record 2098240 DOI 10.17182/hepdata.130957

A search for the nonresonant production of Higgs boson pairs (HH) via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two tau leptons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events in which at least one tau lepton decays hadronically are considered and multiple machine learning techniques are used to identify and extract the signal. The data are found to be consistent, within uncertainties, with the standard model (SM) predictions. Upper limits on the HH production cross section are set to constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to 3.3 (5.2) times the SM prediction for the inclusive HH cross section and to 124 (154) times the SM prediction for the vector boson fusion HH cross section. At 95% confidence level, the Higgs field self-coupling is constrained to be within -1.7 and 8.7 times the SM expectation, and the coupling of two Higgs bosons to two vector bosons is constrained to be within -0.4 and 2.6 times the SM expectation.

0 data tables match query

Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 667, 2023.
Inspire Record 2098239 DOI 10.17182/hepdata.130966

Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016-2018 is used, corresponding to an integrated luminosity of 138 fb$^{-1}$. The signal strength modifier $\mu$, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be $\mu$ = 0.95 $^{+0.10}_{-0.09}$. All results are found to be compatible with the standard model within the uncertainties.

0 data tables match query

Measurement of the top quark mass using a profile likelihood approach with the lepton+jets final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 963, 2023.
Inspire Record 2629755 DOI 10.17182/hepdata.127993

The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.

0 data tables match query

Search for central exclusive production of top quark pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV with tagged protons

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2024) 187, 2024.
Inspire Record 2140837 DOI 10.17182/hepdata.127701

A search for the central exclusive production of top quark-antiquark pairs ($\mathrm{t\bar{t}}$) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb$^{-1}$. The $\mathrm{t\bar{t}}$ decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.

0 data tables match query

First measurement of the top quark pair production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 08 (2023) 204, 2023.
Inspire Record 2648595 DOI 10.17182/hepdata.135832

The first measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb$^{-1}$, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $\mathrm{t\bar{t}}$ production cross section of 881 $\pm$ 23 (stat+syst) $\pm$ 20 (lumi) pb is measured, in agreement with the standard model prediction of 924 $^{+32}_{-40}$ pb.

0 data tables match query

Observation of four top quark production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 847 (2023) 138290, 2023.
Inspire Record 2661880 DOI 10.17182/hepdata.138420

The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.7 $^{+3.7}_{-3.5}$ (stat) $^{+2.3}_{-1.9}$ (syst) fb, in agreement with the available standard model predictions.

0 data tables match query

Measurement of the electroweak production of W$\gamma$ in association with two jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 032017, 2023.
Inspire Record 2618186 DOI 10.17182/hepdata.135702

A measurement is presented for the electroweak production of a W boson, a photon ($\gamma$), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross section for the electroweak W$\gamma$jj production is 23.5 $^{+4.9}_{-4.7}$ fb, whereas the total cross section for W$\gamma$jj production is 113 $\pm$ 13 fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters $f_\mathrm{M,2-5}$$/$$\Lambda^4$ and $f_\mathrm{T,6-7}$$/$$\Lambda^4$.

0 data tables match query

Version 3
Measurement of the dependence of the hadron production fraction ratio $f_\mathrm{s} / f_\mathrm{u}$ and $f_\mathrm{d} / f_ \mathrm{u}$ on B meson kinematic variables in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 121901, 2023.
Inspire Record 2610522 DOI 10.17182/hepdata.134069

The dependence of the ratio between the B$_\mathrm{s}^0$ and B$^+$ hadron production fractions, $f_\mathrm{s} / f_\mathrm{u}$, on the transverse momentum ($p_\mathrm{T}$) and rapidity of the B mesons is studied using the decay channels B$_\mathrm{s}^0$$\to$ J$/\psi\,\phi$ and B$^+$$\to$ J$/\psi$ K$^+$. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6 fb$^{-1}$. The $f_\mathrm{s} / f_\mathrm{u}$ ratio is observed to depend on the B $p_\mathrm{T}$ and to be consistent with becoming asymptotically constant at large $p_\mathrm{T}$. No rapidity dependence is observed. The ratio of the B$^0$ to B$^+$ hadron production fractions, $f_\mathrm{d} / f_\mathrm{u}$, measured using the B$^0$$\to$ J$/\psi$ K$^{*0}$ decay channel, is found to be consistent with unity and independent of $p_\mathrm{T}$ and rapidity, as expected from isospin invariance.

0 data tables match query

Search for resonances in events with photon and jet final states in proton-proton collisions at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2023) 189, 2023.
Inspire Record 2659689 DOI 10.17182/hepdata.139903

A search for resonances in events with the $\gamma$+jet final state has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the $\gamma$+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting the mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the $\gamma$+jet final state.

0 data tables match query

Searches for Higgs Boson Production through Decays of Heavy Resonances

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rept. 1115 (2025) 2342 368-447, 2025.
Inspire Record 2771692 DOI 10.17182/hepdata.146897

The discovery of the Higgs boson has led to new possible signatures for heavy resonance searches at the LHC. Since then, search channels including at least one Higgs boson plus another particle have formed an important part of the program of new physics searches. In this report, the status of these searches by the CMS Collaboration is reviewed. Searches are discussed for resonances decaying to two Higgs bosons, a Higgs and a vector boson, or a Higgs boson and another new resonance. All analyses use proton-proton collision data collected at $\sqrt{s}$ = 13 TeV in the years 2016-2018. A combination of the results of these searches is presented together with constraints on different beyond-the-standard model scenarios, including scenarios with extended Higgs sectors, heavy vector bosons and extra dimensions. Studies are shown for the first time by CMS on the validity of the narrow-width approximation in searches for the resonant production of a pair of Higgs bosons. The potential for a discovery at the High Luminosity LHC is also discussed.

0 data tables match query