We present a measurement of angular observables, $P_4'$, $P_5'$, $P_6'$, $P_8'$, in the decay $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. Four angular observables, $P_{4,5,6,8}'$ are extracted in five bins of the invariant mass squared of the lepton system, $q^2$. We compare our results for $P_{4,5,6,8}'$ with Standard Model predictions including the $q^2$ region in which the LHCb collaboration reported the so-called $P_5'$ anomaly.
Results of the angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$ (where $\ell = e,\mu$) in five bins of $q^2$, the di-lepton invariant mass squared.
We report results on studies of the e+e- annihilation into three-body Y(nS)pi+pi- (n=1,2,3) final states including measurements of cross sections and the full amplitude analysis. The cross sections measured at sqrt(s)=10.865 GeV and corrected for the initial state radiation are sigma(e+e-=>Y(1S)pi+pi-)=(2.27+-0.12+-0.14) pb, sigma(e+e-=>Y(2S)pi+pi-)=(4.07+-0.16+-0.45) pb, and sigma(e+e-=>Y(3S)pi+pi-)=(1.46+-0.09+-0.16) pb. Amplitude analysis of the three-body Y(nS)pi+pi- final states strongly favors I^G(J^P)=1^+(1^+) quantum-number assignments for the two bottomonium-like Zb+- states, recently observed in the Y(nS)pi+- and hb(mP)pi+- (m=1,2) decay channels. The results are obtained with a $121.4 1/fb data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(1S) PI+ PI-.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(2S) PI+ PI-.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(3S) PI+ PI-.
We report a high-statistics measurement of the differential cross section of the process gamma gamma --> K^0_S K^0_S in the range 1.05 GeV <= W <= 4.00 GeV, where W is the center-of-mass energy of the colliding photons, using 972 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider operated at and near the Upsilon-resonance region. The differential cross section is fitted by parameterized S-, D_0-, D_2-, G_0- and G_2-wave amplitudes. In the D_2 wave, the f_2(1270), a_2(1320) and f_2'(1525) are dominant and a resonance, the f_2(2200), is also present. The f_0(1710) and possibly the f_0(2500) are seen in the S wave. The mass, total width and product of the two-photon partial decay width and decay branching fraction to the K bar{K} state Gamma_{gamma gamma}B(K bar{K}) are extracted for the f_2'(1525), f_0(1710), f_2(2200) and f_0(2500). The destructive interference between the f_2(1270) and a_2(1320) is confirmed by measuring their relative phase. The parameters of the charmonium states chi_{c0} and chi_{c2} are updated. Possible contributions from the chi_{c0}(2P) and chi_{c2}(2P) states are discussed. A new upper limit for the branching fraction of the P- and CP-violating decay channel eta_c --> K^0_S K^0_S is reported. The detailed behavior of the cross section is updated and compared with QCD-based calculations.
The W dependence of the cross section after integrating up to |cosTheta*|<0.8 and 0.6.
The cos(Theta*) dependence of the differential cross section for the W ranges 1.10-1.11, 1.11-1.12 and 1.12-1.13.
The cos(Theta*) dependence of the differential cross section for the W ranges 1.13-1.14, 1.14-1.15 and 1.15-1.16.
The cross sections for the reactions $e^+e^- \to \phi\eta, \quad \phi\eta', \quad \rho\eta, \quad \rho\eta'$ have been measured using a data sample of 516 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. The corresponding values of the cross sections are: $1.4 \pm 0.4 \pm 0.1$ fb $(\phi\eta)$, $5.3 \pm 1.1 \pm 0.4$ fb $(\phi\eta')$, $3.1 \pm 0.5 \pm 0.1$ fb $(\rho\eta)$ and $3.3 \pm 0.6 \pm 0.2$ fb $(\rho\eta')$. The energy dependence of the cross sections is presented using Belle measurements together with those of CLEO and BaBar.
Radiativity corrected cross section.
We report measurements of the exclusive cross section for $e^+e^- \to D \overline D $, where $D=D^0$ or $D^+$, in the center-of-mass energy range from the $D \overline D $ threshold to $5\mathrm{GeV}/c^2$ with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of $673$ $\mathrm{fb}^{-1}$.
Cross section of E+ E- --> D0 DBAR0.
Cross section of E+ E- --> D+ D-.
We report the first measurement of the lepton forward-backward asymmetry ${\cal A}_{\rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B \rightarrow X_s \ell^+ \ell^-$ with a sum of exclusive final states, where $\ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772\times10^6$ $B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${\cal A}_{\rm FB}$ for the inclusive $B \rightarrow X_s \ell^+ \ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${\cal A}_{\rm FB} < 0$ is excluded at the 2.3$\sigma$ level, where $\sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$\sigma$ of the Standard Model theoretical expectation.
The value of ASYM(FB) obtained from the fit in each of the four Q**2 bins.
A high precision study of the process gamma gamma -> p p-bar has been performed using a data sample of 89/fb collected with the Belle detector at the KEKB e+e- collider. The cross section of p p-bar production has been measured at two-photon center-of-mass (c.m.) energies between 2.025 and 4.0 GeV and in the c.m. angular range of |cos(theta^*)|<0.6. Production of gamma gamma -> eta_c -> p p-bar is observed and the product of the two-photon width of the eta_c and its branching ratio to p p-bar is determined.
Measured cross section for GAMMA GAMMA --> PBAR P in the angular region ABS(COS(THETA)) < 0.6.
Measured differential cross sections versus COS(THETA) for the W ranges 2.075 to 2.5, 2.5 to 3.0 and 3.0 to 4.0 GeV.
Measured differential cross sections versus COS(THETA) for the W ranges 2.075 to 2.1, 2.1 to 2.2 and 2.2 to 2.3 GeV.
We have measured pi+pi- and K+K- production in two-photon collisions using 87.7 /fb of data collected with the Belle detector at the asymmetric energy e+e- collider KEKB. The cross sections are measured to high precision in the two-photon center-of-mass energy (W) range between 2.4 GeV < W < 4.1 GeV and angular region |cos theta^{*}| < 0.6. The cross section ratio sigma(gammagamma->K+K-)/sigma(gammagamma->pi+pi-) is measured to be 0.89 +- 0.04(stat) +- 0.15(syst) in the range of 3.0 GeV < W < 4.1 GeV, where the ratio is energy independent. We observe a sin^{-4} theta^{*} behavior of the cross section in the same W range. Production of chi_{c0} and chi_{c2} mesons is observed in both gammagamma -> pi+pi- and gammagamma -> K+K- modes.
Cross sections for PI+ PI- and K+ K- production.
Ratio of K+ K- to PI+ PI- production in the region of W from 3.0 to 4.1 GeV, where the ratio is energy independent.
Angular dependence of the normalized differential cross section, $\sigma_0^{-1}{\rm d}\sigma/{\rm d}|\cos\theta^*|$, for the $\pi^+\pi^-$ process. The errors are statistical only.
We report a measurement of the exclusive \$e^+e^- \to \Lambda_c^+ \Lambda_c^-$ cross section as a function of center-of-mass energy near the $\Lambda_c^+ \Lambda_c^-$ threshold. A clear peak with a significance of $8.8\sigma$ is observed in the $\Lambda_c^+ \Lambda_c^-$ invariant mass distribution just above threshold. With an assumption of a resonance origin for the observed peak, a mass and width of $M=(4634^{+8}_{-7} \mathrm{(stat.)} ^{+5}_{-8} \mathrm{(sys.)})\mevc$ and $\Gamma_{\mathrm{tot}}=(92^{+40}_{-24} \mathrm{(stat.)}^{+10}_{-21} \mathrm{(sys.)})\mev$ are determined. The analysis is based on a study of events with initial-state-radiation photons in a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 695 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+e^_$ collider.
Cross section for the exclusive process E+ E- --> LAMBDA/C+ LAMBDA/CBAR-.
We report the first observation of e+e- -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi-, and first evidence for e+e- -> Upsilon(3S)pi+pi-, Upsilon(1S)K+K-, near the peak of the Upsilon(5S) resonance at sqrt{s}~10.87 GeV. The results are based on a data sample of 21.7 fb^-1 collected with the Belle detector at the KEKB e+e- collider. The observed cross-sections are sigma(Upsilon(1S)pi+pi-) = 1.61+-0.10(stat)+-0.12(sys) pb and sigma(Upsilon(2S)pi+pi-) = 2.35+-0.19(stat)+-0.32(sys) pb. Attributing these signals to the Upsilon(5S) resonance, the partial widths Gamma(Upsilon(5S)->Upsilon(1S)pi+pi-) = 0.59+-0.04(stat)+-0.09(sys) MeV and Gamma(Upsilon(5S)->Upsilon(2S)pi+pi-) = 0.85+-0.07(stat)+-0.16(sys) MeV are inferred. These are much larger than any partial widths for previously observed Upsilon(nS) -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi- decays.
Cross section for the final state UPSI(1S) PI+ PI-.
Cross section for the final state UPSI(2S) PI+ PI-.
Cross section for the final state UPSI(3S) PI+ PI-.