None
The cross section per nucleon is evaluated with assumption of the linear atomic number dependence. SIG(C=NEUTRINO) and SIG(C=ANTINEUTRINO) are corresponded to the NUMU and NUMUBAR data, respectevly. CLOOP-OVER.
New Results are presented on nuclear effects in deep inelastic muon scattering on deuterium and iron targets at large Q 2 . The ratio F Fe 2 (x) F D 2 2 (x) measured in the kinematic range 0.06⩽ x ⩽0.70, 14GeV 2 ⩽ Q 2 ⩽70 GeV 2 is in good agreement with earlier measurements in the region of x > 0.25. At lower x , the structure function ratio exhibits an enhancement of ≈5%.
Q**2 RANGE FOR EACH X BIN IS AS FOLLOWS: 14 TO 20, 16 TO 30, 18 TO 35, 18 TO 46, 20 TO 106, 23 TO 106, 23 TO 150, 26 TO 200, 26 TO 200, 26 TO 200 GEV**2.
New data is presented on the ratios of structure functions F 2 ( x , Q 2 ) measured in deep inelastic muon scattering with deuterium, nitrogen, and iron targets. The existence of nuclear effects at large Q 2 is confirmed with improved systematic accuracy. The ratio F 2 Fe ( x ) F 2 D 2 ( x ) covers the range 0.20 ⩽ x ⩽ 0.70 and is in agreement with earlier measurements. The ratio F 2 N 2 ( x )/ F 2 D 2 ( x ) is measured over the range 0.08 ⩽ x ⩽ 0.70 and is compatible with unity below x = 0.3.
VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 46-106,46-106,53-150,53-200,70-200,80-200 RESPECTIVELY.
VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 26-40,26-61,30-80,30-106,30-106,30-150,30-200,35-200,46-200.
The isoscalar structure functions xF_3 and F_2 are measured as functions of x averaged over all Q~2 permissible for the range 6 to 28 GeV of incident (anti)neutrino energy. With the measured values of xF_3, the value of the Gross-Llewellyn Smith sum rule is found to be $\int_{0}~{1}{F_3 dx} = 2.13\pm0.38 (stat)\pm 0.26 (syst)$. The QCD analysis of xF_3 provides $\Lambda_{\overline{MS}} =358 \pm 59 MeV$ . The obtained value of the strong interaction constant $\alpha_S (M_Z)=0.120~{+3}_{-4}$ is larger than most of the deep inelastic scattering results.
The value of F2 is extracted with R = 0. The difference F2(C=R=.1)-F2(C=R=0.) is also presented.
None
No description provided.
No description provided.
F2(FE)/F2(DEUT) AVERAGED OVER Q2.
None
VALUES OBTAINED USING ASSUMPTION R=0.
VALUES OBTAINED USING ASSUMPTION R=0.
The results of total cross section measurements for theνμ,\(\bar \nu _\mu\) interactions with isoscalar target in the 3 – 30 GeV energy range have been presented. The data were obtained with the IHEP-JINR Neutrino Detector in the “natural” neutrino beams of the U-70 accelerator. Neutrino fluxes were obtained by averaging the spectra, based on the calculations with the use of the experimental data on secondary particle yields from the target and muon fluxes measurements in 9 gaps of the muon filter, as well as the spectra determined from quasi-elastic events and spectra defined by extrapolating differential distributiondσ/dy in the regiony=0. The significant deviation from the linear dependence forσtot versus neutrino energy is determined in the energy range less than 15 GeV.
No description provided.
No description provided.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.
This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.
Invariant mass of the photon+jet pair for events passing the final selections. The number of observed events and the fit background estimates are given in each bin, where the fit estimates are rounded to the nearest integer.
The 95% CL upper limits on SIG*BR*A*EPSILON for a hypothetical signal with a Gaussian-shaped M(GAMMA JET) distribution as a function of the signal mass M(G) for four values of the relative width SIGMA(G) / M(G).
Acceptance (A), efficiency (EPSILON), cross-section (SIG) and limits in number of events for the quantum black hole (QBH) benchmark model, as a function of the threshold mass M(th). Uncertainties on the cross section are on the order of 1%. The limits include statistical uncertainties only. Expected limits include the 68% uncertainty band. Acceptance was calculated using parton-level quantities by imposing criteria that apply directly to kinematic selections (photon/jet |eta|, photon/jet transverse momentum, Delta(eta), Delta(R)). All other selections, which in general correspond to event and object quality criteria, were used to calculate the efficiency based on the events included in the acceptance.
Searches for heavy long-lived charged particles are performed using a data sample of 19.8 fb$^{-1}$ from proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for $\tan\beta$ between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. $R$-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.
Cross-section upper limits as a function of the $\tilde{\tau}_1$ mass for direct $\tilde{\tau}_1$ production and three values of $\tan\beta$. Expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties observed limits for three values of $\tan\beta$ and theoretical cross-section prediction for $\tan\beta=10$ with $\pm 1\sigma$ band.
Cross-section upper limits as a function of the $\tilde{\chi}_1$ mass for $\tilde{\tau}_1$ sleptons resulting from the decay of directly produced charginos and neutralinos in GMSB. Observed limits, expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties and theoretical cross-section prediction (dominated by $\tilde{\chi}^0_1 \tilde{\chi}^+_1$ production) with $\pm 1\sigma$ uncertainty. Depending on the hypothesis and to a small extent on $\tan\beta$, in these models, the chargino mass is 210 to 260 GeV higher than the neutralino mass.
Cross-section upper limits for various chargino masses in stable-chargino models. Expected limit with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties, observed limit and theoretical cross-section prediction with $\pm 1\sigma$ uncertainties.