The angular distribution of 2720 tracks of 1085 hadronic final states produced from (e+e-) annihilation has been studied in the 1.2 to 3.0 GeV total centre-of-mass energy range. If we parametrize the angular distribution in terms off(θ) =1 + A cos2 θ, where 6 is the angle between the hadronic track produced and the colliding-beam direction, the results show thatA is less than 0.21, with 90% confidence.
ANGULAR DISTRIBUTION OF CHARGED HADRONS FOUND TO BE 1 + (0.07 +- 0.11)*(COS(THETA)**2).
A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.
No description provided.
No description provided.
FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.
In this paper a comparison of the general features of the reactions K ± p→Q ± p (1) at incident momentum 8.25 GeV/ c is presented. The relevant data derive from events yielding four-constraint fits to the reactions K ± p→K ± π + π − p in exposures of the CERN 2m HBC to RF-separated K + and K − beams. The (K ππ ) effective mass distributions, production angular distributions in the Q region (1.2⩽ M (K ππ )⩽1.5 GeV) and corresponding decay angular distributions are exhibited, and background effects due to N ∗ and Δ production are systematically studied. In particular, it is found that the distributions d σ /d t ′ and d σ /d t for reactions (1) are adequately described by exponential functions over the interval 0.05–0.35 GeV 2 , and exhibit a cross-over effect for momentum transfer squared −0.1 GeV 2 . For both reactions a flattening of d σ /d t ′ for t ′ < 0.05 GeV 2 is observed. By studying the Chew-Low plots and the effects of the different cuts it was found that this flattening cannot be attributed to amplitudes with net s -channel helicity flip different from zero, at least at these energies.
ABOUT 7 PCT RELATIVE NORMALIZATION UNCERTAINTY FOR K+ AND K- SAMPLES.
FITS TO D(SIG)/DT AND D(SIG)/DTP FOR Q+ AND Q- PRODUCTION TO DETERMINE CROSS-OVER POSITIONS. DATA HAVE MASS CUTS TO SELECT K*0 AND REMOVE DEL++ AND DEL0. MIN IS THE MINIMUM VALUE OF -T FOR THE RELEVANT (K PI PI) MASS.
The reaction π−p→X−p, X−→ηπ−, η→γγ has been studied in an optical spark-chamber experiment at the Argonne ZGS (Zero Gradient Synchrotron) at a beam momentum of 6.0 GeV/c and with 0.27≤|t|≤0.42 (GeV/c)2. The ηπ mass spectrum contains about 1400 events in the mass range 0.80<M(ηπ)<1.55 GeV/c2, and is dominated by approximately 1000 events of the type A2−→ηπ−. No structure is discernible within the A2 mass spectrum for an experimental resolution of 7.1 MeV/c2 [16.7 MeV/c2 FWHM (full width at half maximum)]. A single D-wave Breit-Wigner distribution fits the data with a high confidence level, yielding for the A2 the parameters M0=1.323±0.003 GeV/c2 and Γ0=0.108±0.009 GeV/c2. The angular distribution of the decay A2−→ηπ− is analyzed and the resultant density matrix elements have the values ρ11=0.45±0.02, ρ1−1=0.45±0.04, and ρ00=0.09±0.04. All other elements are consistent with zero. Finally, the missing-mass spectrum in the region of the A2 is presented. A signal of 230 events above background per 5-MeV/c2 interval is observed at the A2 peak, with a signal to background ratio of greater than 1:1. A single D-wave Breit-Wigner distribution together with a quadratic background fits the data well, with the parameters for the A2 being M0=1.324±0.003 GeV/c2 and Γ0=0.104±0.009 GeV/c2. Both A2 mass spectra are incompatible with the dipole shape.
No description provided.
THIS FIT ASSUMES ALL OTHER DENSITY MATRIX ELEMENTS (RHO(2M) AND RE(RHO(10))) ARE ZERO SINCE THEY ARE QUITE CONSISTENT WITH ZERO IN A FULL FIT. QUOTED ERRORS INCLUDE SYSTEMATIC ERRORS, WHILE STATISTICAL FITTING ERRORS ARE SHOWN SEPARATELY.
Total cross sections have been measured for the transmission of long-lived neutral K mesons through hydrogen and deuterium. The momentum range for the KL0 was 130-550 MeV/c. The momentum of each detected kaon was measured by time of flight. The cross sections are consistent with earlier less precise results. Comparison of the KL0 cross sections is made with the results of several K-matrix fits to other K¯N data, and the KL0 total cross sections are compared with existing theoretical calculations for K−d total cross sections.
THE AUTHORS ADVISE AGAINST USING THESE CROSS SECTIONS WHEN COMBINING THEM WITH OTHER DATA SETS. IT IS RECOMMENDED THAT ONE SHOULD USE INSTEAD THE ORIGINAL DATA POINTS FOR SINGLE-CHOPPED AND DOUBLE-CHOPPED INJECTION (WHICH HAVE SEPARATE NORMALIZATION ERRORS) FROM WHICH THESE COMBINED DATA ARE DERIVED. A NORMALIZATION ERROR FOR THESE AVERAGED CROSS SECTIONS IS THEREFORE NOT QUOTED.
We present data on inclusive and semi-inclusive ϱ 0 production in 147 GeV/ c π − p interactions. We find a total cross section of 7.3 ± 1.3 mb. Most of this cross section is found in the lower topology events (⩽ 10 prongs), and in the central and forward rapidity regions. The P T 2 dependence of ϱ 0 production, 〈: n > ϱ 0 per event, and the ϱ 0 / π + ratios are also discussed.
No description provided.
We report the observation of a spin 4 resonance from the analysis of the reaction π − p→ K + K − n. The mass and width of the h-meson were determined to be 2050 MeV and 225 MeV. The quantum numbers are J P = 4 + , C = +1 and very probably I G = 0 + .
No description provided.
Results are presented for the reactions (1) π+n→pπ+π−, (2) π+n→pπ+π−π0, at an incident pion beam momentum of 11.7 GeV/c. Both reactions show considerable resonance production. Reaction (1) is dominated by ρ0 and f0 production and there is evidence for the variation of the ρ00 width with momentum transfer. Decay angular distributions are presented for the dipion system observed in reaction (1). Reaction (2) shows the production of both dipion and tripion resonances and there is evidence for the associated production of\(\mathcal{N}\)-resonances with the dipion resonances.
No description provided.
DN/DT PLOTTED. ALL RESONANCES ARE DEFINED JUST BY MASS CUTS.
RHO0 MASS REGION OF DIPION SYSTEM. NUMERICAL VALUES TAKEN FROM TABLE 6.1 OF THE THESIS BY D. KEMP (DURHAM 1974).
We present evidence for δ production in the reactions K − p→ Σ (1385) + δ − ; δ − → η 0 π − , and K − p → Λδ + π − ; δ + → η 0 π + , in a bubble chamber experiment with beam momentum in the range 3.1 to 3.6 GeV/ c . The η 0 from the δ decay is seen both as a missing mass effect, and in its charged decay modes. The δ − has a mass of 989 ± 4 MeV, and width a of 16 −16 +25 MeV (after allowing for experimental resolution). The cross section for Σ(1385) − δ − production is 7±3 μ b; the reaction is produced at small momentum transfers. The mass and width of the δ + are consistent with those of the δ − , and the cross section for the Λ 0 π − δ + final state is about 5 μb. Neither δ appears to be produced as a result of D 0 decay.
No description provided.
Results on the channels K − p → Λ 0 η 0 , Λ 0 π 0 , Σ 0 π 0 , Λ 0 π 0 π 0 and Σ 0 π 0 π 0 are obtained in a K − p formation experiment using 1 million photographs taken in a heavy liquid bubble chamber filled with a CF 3 BrC 3 H 8 mixture. The results are compared with hydrogen bubble chamber (HBC) experiments and with experiments having full or partial gamma-ray detection. Our Λ 0 π 0 and Λ 0 + neutral cross section agree with HBC results. Our Σ 0 π 0 cross section does not exhibit a bump at 1670 MeV as previously seen in HBC experiments. Our Λ 0 π 0 π 0 data are dominated by a Σ (1385) π 0 production. Our Σ 0 π 0 π 0 data is consistent with the presence of some Σ (1405) π 0 production.
No description provided.
No description provided.
No description provided.