The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12<x<1.0 and pT<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Čerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-pT hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given.
No description provided.
No description provided.
No description provided.
We present high-statistics results on the reactions a+p→c+X where a and c can be any of π±, K±, p, or p¯. The data were taken at 100 and 175 GeV/c incident momenta using the Fermilab Single-Arm Spectrometer operated over the kinematic range 0.2<x<1.0 and pt<~1.0 GeV/c. Investigating the x dependence of the data, we find agreement with a quark-parton picture, namely the cross sections have a power-law behavior in 1−x independent of pbeam and pt.
No description provided.
No description provided.
No description provided.
The azimuthal dependence of the flow of hadronic energy about the momentum-transfer direction in charged-current deep-inelastic neutrino-nucleon scattering is used to study gluon emission and the transverse momentum 〈kT〉 of partons confined inside the nucleon. A 7-standard-deviation azimuthal asymmetry is observed indicating an average 〈kT〉=0.303±0.041 GeV/c.
No description provided.
No description provided.
No description provided.
A measurement of the ratio of the magnetic form factor of the neutron to that of the proton has been carried out by comparing large- and small-angle elastic electron-deuteron scattering at constant four-momentum transfers. The experimental result for the average value of the ratio in the range of momentum transfers from 1.6 f−1 to 2.25 f−1 is F2nFp=(0.91±0.05)±0.07; the first error is a standard deviation arising from experimental uncertainties, and the second from theoretical uncertainties in the analysis. Measurements of the ratio of the nucleon isotopic scalar form factors have also been obtained from this experiment. The average value of F2sF1s for the same range of momentum transfers has been found to be (+0.06±0.09) ±0.13. The small-angle scattering data have been used to determine the charge form factor of the deuteron in the range of momentum transfers from 0.98 f−1 to 2.8 f−1. The results are consistent with a repulsive-core model of the deuteron.
No description provided.
No description provided.
No description provided.
Average charged multiplicities have been measured separately in $b$, $c$ and light quark ($u,d,s$) events from $Z~0$ decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of $b$ and light quark events, and reconstructed charmed mesons were used to select $c$ quark events. We measured the charged multiplicities: $\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.})$, $\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ~{+0.41}_{-0.36}(\rm{syst.})$ $\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ~{+0.38}_{-0.37}(\rm{syst.})$, from which we derived the differences between the total average charged multiplicities of $c$ or $b$ quark events and light quark events: $\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})~{+0.36}_{-0.30}(\rm{syst.})$ and $\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})~{+0.30}_{-0.29}(\rm{syst.})$. We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.
Average charge multiplicity in B-tagged events.
Average charge multiplicity in C-tagged events.
Average charge multiplicity in light quark (uds) events.
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.
We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.
No description provided.
We present a new measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (77.23+-0.52)%. Using a sample of 93,644 Z decays, we measure the pole-value of the asymmetry, ALR0, to be 0.1512+-0.0042(stat.)+-0.0011(syst.) which is equivalent to an effective weak mixing angle of sin**2(theta_eff)=0.23100+-0.00054(stat.)+-0.00014(syst.).
No description provided.
The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exclusive and electroweak interference effects of total-state radiation.