The response function of nuclei in the quasielastic region at large momentum transfer (q≤10 fm−1) is measured for a series of nuclei, He4, C12, Al27, Fe56, and Au197, up to large values of the Bjorken scaling variables x<2.5.
No description provided.
No description provided.
No description provided.
The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.
No description provided.
Additional 7 pct systematic error.
Additional 23 pct systematic error.
The ratio of cross sections for inelastic muon scattering on xenon and deuterium nuclei was measured at very low Bjorken x (0.000 02
Data using Electromagnetic Cuts.
Data using Hadron Requirement.
Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.
Xenon structure function parameterized as being equal to the DEUT structurefunction.
Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean p T 2 with an increase in the center of mass energy.
No description provided.
No description provided.
No description provided.
We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.
2.6 pct rad length target.
2.6 pct rad length target.
2.6 pct rad length target.
We measured the differences in R=σLσT and the cross-section ratio σAσD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤5 (Gev/c)2. Our results for RA−RD are consistent with zero for all x and Q2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q2, are now in agreement.
No description provided.
No description provided.
No description provided.
Data obtained with the bubble chamber BEBC at CERN are used for the first significant test of Adler's prediction for the neutrino and antineutrino-proton scattering cross sections at vanishing four-momentum transfer squaredQ2. An Extended Vector Meson Dominance Model (EVDM) is applied to extrapolate Adler's prediction to experimentally accessible values ofQ2. The data show good agreement with Adler's prediction forQ2→0 thus confirming the PCAC hypothesis in the kinematical region of high leptonic energy transfer ν>2 GeV. The good agreement of the data with the theoretical predictions also at higherQ2, where the EVDM terms are dominant, also supports this model. However, an EVDM calculation without PCAC is clearly ruled out by the data.
No description provided.
No description provided.
No description provided.
Within the framework of the quark-parton model, the quark and anti-quark structure functions of the proton have been measured by fitting them to the distributions of the events in the Bjorkeny variable. The data used form the largest sample of neutrino and antineutrino interactions on a pure hydrogen target available, and come from exposures of BEBC to the CERN wide band neutrino and antineutrino beams. It is found that the ratiodv/uv of valence quark distributions falls with increasing Bjorkenx. In the context of the quark-parton model the results constrain the isospin composition of the accompanying diquark system. Models involving scattering from diquarks are in disagreement with the data.
No description provided.
No description provided.
No description provided.
The ratios R vp and R vp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/ c and a charged multiplicity of at least 3, it was found that R vp = 0.384 ± 0.015 and R vp = 0.338 ± 0.014 ± 0.016, corresponding to a value of sin 2 θ w (M w MS of 0.225 ± 0.030 . Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u 2 l − d 2 L = −0.080 ± 0.043 ± 0.012 and u 2 R − d 2 R = 0.021±0.055±0.028.
No description provided.