Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in sqrt{s} = 7 TeV proton-proton collisions

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 709 (2012) 137-157, 2012.
Inspire Record 943401 DOI 10.17182/hepdata.58447

Results of three searches are presented for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons, e or mu. The analysis uses a data sample collected during the first half of 2011 that corresponds to a total integrated luminosity of 1 fb^-1 of sqrt{s} = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. Opposite-sign and same-sign dilepton events are separately studied, with no deviations from the Standard Model expectation observed. Additionally, in opposite- sign events, a search is made for an excess of same-flavour over different-flavour lepton pairs. Effective production cross sections in excess of 9.9 fb for opposite-sign events containing supersymmetric particles with missing transverse momentum greater than 250 GeV are excluded at 95% CL. For same-sign events containing supersymmetric particles with missing transverse momentum greater than 100 GeV, effective production cross sections in excess of 14.8 fb are excluded at 95% CL. The latter limit is interpreted in a simplified weak gaugino production model excluding chargino masses up to 200 GeV.

18 data tables

The dilepton invariant mass distribution for same-sign dileptons.

The missing-mass ET distribution for same-sign dilepton events before any jet requirement.

The missing-mass ET distribution for same-sign dilepton events after requiring two high-pt jets.

More…