The reaction π-p→pωπ- has been studied at 9.1 GeV/c, its total cross-section is σ=(123±22) μb. The pB− and the quasi-three-body channels contribute with cross-section of σ=(24±7) μb and σ=(94±23) μb, respectively. The main features of the quasi-three-body pωπ- channel, displayed by some techniques of data presentation, are satisfactorily described by a double-Regge-pole model. In this model pomeron-meson and meson-meson exchanges are taken into account. An OPE modelà la Veneziano predicts a total cross-section too high and reproduces very poorly the observed features.
BREIT-WIGNER PLUS BACKGROUND FITS FOR B(1235)- AND OMEGA MESONS.
An optical spark-chamber counter experiment at Adone, the Italian colliding electron-positron ring, has succeeded in measuring the cross-section for the process e+e−→p\(\bar p\) near threshold (Ec.m.=2.1 GeV). The result isσ(e+e−→p\(\bar p\))=(0.91±0.22) nb.
ISOTROPIC ANGULAR DISTRIBUTION ASSUMED.
Production and decay properties of the B-meson are studied in the reactions π±p→B±p at 11 GeV/c. Values for mass, width, total and differential cross-sections and spin density matrix elements are given. The spin and parity, and the helicity states in the B→πω decay, are analysed.
BREIT-WIGNER FIT WITH 30 PCT BACKGROUND SUBTRACTED AND CORRECTED FOR UNSEEN OMEGA DECAYS.
FOR <OMEGA PION> EVENTS IN THE B REGION (1.16 TO 1.32 GEV) WITHOUT SUBTRACTING BACKGROUND.
ASSUMING B HAS SPIN-PARITY OF 1+.
A sample of 43000 two-prong events obtained at a momomentum of 11.7 GeV/c is used to determine the cross-sections of the fitted channels, and to study the reaction π+p→π+pπ0. We investigate in particular the quasi-two-body channels π0Δ++ and ρ+p.
No description provided.
No description provided.
No description provided.
The final results of an experimental investigation of the reaction γ+n→p+π− performed with a deuterium bubble chamber at the 1 GeV Frascati electrosynchrotron are presented. Total and differential cross-sections on neutrons are extracted by means of the spectator model, the reliability of which has been checked by numerous tests and is extensively discussed. The problems of a possible isotensor component in the electromagnetic current, the time-reversal invariance of the electromagnetic interactions and the photoproduction of the Roper resonance are considered in detail.
No description provided.
No description provided.
No description provided.
Differential cross sections for coherent π0-photoproduction from deuterium have been measured in the photon energy range from 240 to 400 MeV and for pion c.m. angles between 70 ° and 160 °. The recoil deuterons were analysed in angle and momentum by a magnetic spectrometer. The cross sections obtained were higher by a factor of about 2 compared with the results from Stanford [7], the only data available up to now in the first resonance region. Below the resonance the measured cross sections give a smooth extension to the low energy data from Glasgow [5] and Orsay [6].
No description provided.
None
No description provided.
With an apparatus slightly improved with respect to a previous one we have studied multihadronic production at the Adone e + e − storage ring up to a maximum center of mass energy of 3 GeV.
No description provided.
No description provided.
No description provided.
Cross sections of 27 radionuclides formed by the interaction of 300-GeV protons with silver were determined on the assumption that the cross section of the reaction Al27(p, 3pn) remains the same as at 10-30 GeV. The results are compared with the corresponding values obtained at 11.5 GeV. The average value of the ratio σ300σ11.5 for all products ranging from Be7 to Ag106m is 0.91±0.07 and is independent of mass number.
No description provided.
SIG(C=11.5) means the cross section for 11.5 GeV Plab, obtained in previousexperiment.
The joint decay density-matrix elements have been measured for the ρ0Δ++ and ωΔ++ channels at 3.7 GeV/c. The data are presented as a function of momentum transfer in both the t-channel and s-channel coordinate systems. The presence of correlated decays is illustrated for both reactions by employing selective cuts on the decay angles of one resonance, and displaying the effects on the decay distribution of the opposing resonance. An amplitude analysis is performed with the data near 0° production angle, where we obtain a helicity decomposition of the scattering amplitude with no experimental ambiguity.
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
S-CHANNEL COORDINATE SYSTEM (XYZ=SH).