Cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3684 MeV are presented. The ψ(3684) resonance is established as having the assignment JPC=1−−. The mass is 3684 ± 5 MeV. The partial width for decay to electrons is Γe=2.1±0.3 keV and the total width is Γ=228±56 keV.
No description provided.
We have searched for possible narrow resonances produced in e + e − annihilation at Adone, in the mass regions 1910–2545 MeV and 2970–3090 MeV. No evidence has been found for narrow resonances, within the sensitivity of the present work: we deduce an upper limit on the energy integrated resonant cross section of about 10% of the J/ψ(3100) corresponding value.
No description provided.
The reactions e + e − → hadrons and e + e + e − →e + e − have been studied at the J/gY (3100) resonance). The relative weights of the topological cross sections for fixed charged multiplicity are σ 2 =(32±5)%, σ 4 =(49±8)%, σ 6 =(18±3)%, and σ 8 =(1±0.6)%. The average pion multiplicities are 〈 n ch 〉=3.8±0.3 and 〈n π o 〉=3.1±0.8 . The decay widths are Γ e =(4.6±0.8) keV, Γ h =(59±24) keV, and Γ =(68±26) keV.
CROSS SECTION AROUND RESONANCE.
CROSS SECTION JUST BELOW J/PSI.
MULTIPLICITY AT J/PSI.
We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
No description provided.
We have searched the mass region 3.2 to 5.9 GeV for evidence of narrow resonances in e+e−→hadrons. We find no evidence for any such resonances other than the ψ(3695) in this region with a sensitivity ranging from about 12 to 45% of the integrated cross section of the ψ(3695). The more stringent bounds apply to resonances of a few MeV width, while the looser bounds apply to resonances of up to 20 MeV width.
EXTREAMLY GOOD DATA, MUST BE ASCED FROM AUTHORS.
The total cross section for hadron production by e+e− annihilation has been measured at center-of-mass energies between 2.4 and 5.0 GeV. Aside from the very narrow resonances ψ(3105) and ψ(3695), the cross section varies between 32 and 17 nb over this region with structure in the vicinity of 4.1 GeV.
No description provided.
MEAN CHARGED MULTIPLICITY. ERRORS ARE STATISTICAL ONLY.
We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.
No description provided.
We have observed a very sharp peak in the cross section for e+e−→hadrons, e+e−, and possibly μ+μ− at a center-of-mass energy of 3.105±0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.
No description provided.
We have measured the cross section σ for electron - positron annihilation into three or more hadrons, with at least two charged particles in the final state, at 5 GeV center-of-mass energy. We find a model-independent lower limit of σ>9.1±1.0nb; assuming invariant phase-space production of pions, we calculate the detection efficiency of our detector to be (45 ± 11)%, yielding a cross section σ=21±5nb. The average charged hadron multiplicity is found to be n¯=4.3±0.6.
No description provided.
A large solid angle detector has been used to observe π + π − π o events produced at the φ energy by electron-positron collisions in the Orsay storage ring. Fitting our data with a Breit and Wigner curve, with a fixed width Γ = (3.8±0.4) MeV coming from K O S K O L analysis, we deduce σ e + e − → π + π − π O = (0.70±0.13) μ bat 2 E = Mφ . Using our measurements on the other φ decay modes we deduce ( φ → π + π − π o )/( φ → K o S K o L ) = 0.47±0.06 and ( φ → η o γ )/( φ → K o S K o L ) = 0.077±0.022. Assuming ( φ → K + K − )/( φ → K o S K o L ) = 1.60, we derive σ TOT = (4.7±0.4) μ b, Γ e + e − = (1.27±0.11 keV and g 2 o /4 π = 14.3±1.3 (without finite width correction). Furthermore (from the observation of the ππγ coplanar events) we put an upper limit to the mode e + e − → φ π + π − γ , Γ ( φ → π + π − γ ) ⩽ 0.007 Γ ( φ → Total ) with 90% C.L.
EXPERIMENTAL CROSS SECTIONS INCLUDING RADIATIVE EFFECTS.
FITTED PARTIAL AND TOTAL CROSS SECTION AT PHI PEAK, RADIATIVELY CORRECTED.