Date

Kaon Pair Production in Proton--Proton Collisions

The ANKE collaboration Maeda, Y. ; Hartmann, M. ; Keshelashvili, I. ; et al.
Phys.Rev.C 77 (2008) 015204, 2008.
Inspire Record 763646 DOI 10.17182/hepdata.25173

The differential and total cross sections for kaon pair production in the pp->ppK+K- reaction have been measured at three beam energies of 2.65, 2.70, and 2.83 GeV using the ANKE magnetic spectrometer at the COSY-Juelich accelerator. These near-threshold data are separated into pairs arising from the decay of the phi-meson and the remainder. For the non-phi selection, the ratio of the differential cross sections in terms of the K-p and K+p invariant masses is strongly peaked towards low masses. This effect can be described quantitatively by using a simple ansatz for the K-p final state interaction, where it is seen that the data are sensitive to the magnitude of an effective K-p scattering length. When allowance is made for a small number of phi events where the K- rescatters from the proton, the phi region is equally well described at all three energies. A very similar phenomenon is discovered in the ratio of the cross sections as functions of the K-pp and K+pp invariant masses and the identical final state interaction model is also very successful here. The world data on the energy dependence of the non-phi total cross section is also reproduced, except possibly for the results closest to threshold.

10 data tables match query

Total cross sections for the reaction P P --> P P K+ K- reaction in the phi poor and phi rich regions.

Differential cross section as a function of the invariant mass of the K+ K- pair.

Differential cross section as a function of the invariant mass of the K+ P and K- P pair and their ratio.

More…

The energy dependence of the pp->K+ n Sigma+ reaction close to threshold

Valdau, Yu. ; Barsov, S. ; Buscher, M. ; et al.
Phys.Rev.C 81 (2010) 045208, 2010.
Inspire Record 846092 DOI 10.17182/hepdata.55315

The production of the Sigma+ hyperon through the pp->K+nSigma+ reaction has been investigated at four energies close to threshold, 1.826, 1.920, 1.958, and 2.020 GeV. At low energies, correlated K+pi+ pairs can only originate from Sigma+ production so that their measurement allows the total cross section for the reaction to be determined. The results obtained are completely consistent with the values extracted from the study of the K+-proton correlation spectra obtained in the same experiment. These spectra, as well as the inclusive K+ momentum distributions, also provide conservative upper limits on the Sigma+ production rates. The measurements show a Sigma+ production cross section that varies roughly like phase space and, in particular, none of the three experimental approaches used supports the anomalously high near-threshold pp->K+ nSigma+ total cross section previously reported [T. Rozek et al., Phys. Lett. B 643, 251 (2006)].

6 data tables match query

The K+ double-differential cross section at each of the 5 beam energies intgerated over momentum bins of width +- 12 MeV/c. Note the errors do not include the 7 PCT systematic uncertainty coming from the normalization.

Total cross section for the P P --> K+ P LAMBDA.

Total cross section for the P P --> K+ P SIGMA0.

More…

Investigation of the reaction p p --> p K0 pi+ Lambda in search of the pentaquark.

Nekipelov, M. ; Büscher, M. ; Hartmann, M. ; et al.
J.Phys.G 34 (2007) 627, 2007.
Inspire Record 729437 DOI 10.17182/hepdata.38561

The reaction pp->p K0 pi+ Lambda has been studied with the ANKE spectrometer at COSY-Juelich at a beam momentum of 3.65 GeV/c in order to search for a possible signal of the pentaquark Theta+(1540), decaying into the p K0 system. By detecting four charged particles in the final state, the K0 and the Lambda have been reconstructed to tag strangeness production. It has been found that the pi+ Lambda missing-mass spectrum displays no significant signal expected from the Theta+(1540) excitation. The total cross section for the reaction pp->p K0 pi+ Lambda has been deduced, as well as an upper limit for the Theta+ production cross section. The intermediate Delta++ K0 Lambda state is found to provide a significant contribution to the reaction.

1 data table match query

Measured cross sections.


Measurement of the pn -> dK^+K^- total cross section close to threshold

Maeda, Y. ; Hartmann, M. ; Keshelashvili, I. ; et al.
Phys.Rev.C 79 (2009) 018201, 2009.
Inspire Record 803587 DOI 10.17182/hepdata.50466

Measurements of the pn -> p_spec dK^+K^- reaction, where p_spec is a spectator proton, have been undertaken at the Cooler Synchrotron COSY-Juelich by detecting a fast deuteron in coincidence with a K^+K^- pair in the ANKE facility. Although the proton beam energy was fixed, the moving target neutron allowed values of the non-resonant quasi-free pn -> dK^+K^- total cross section to be deduced up to an excess energy epsilon ~ 100 MeV. Evidence is found for the effects of K^-d and KKbar final state interactions. The comparison of these data with those of pp -> ppK^+K^- and pp -> dK^+Kbar shows that all the total cross sections are very similar in magnitude.

1 data table match query

Total cross section for the non-PHI component of the P N --> DEUT K+ K- reaction as a function of the excess energy with respect to the DEUT K+ K- threshold.


Precision study of the eta-3He system using the d+p->3He+eta reaction

Mersmann, T. ; Khoukaz, A. ; Buscher, M. ; et al.
Phys.Rev.Lett. 98 (2007) 242301, 2007.
Inspire Record 743387 DOI 10.17182/hepdata.31493

The differential and total cross sections for the d+p->3He+eta reaction have been measured in a high precision high statistics COSY-ANKE experiment near threshold using a continuous beam energy ramp up to an excess energy Q of 11.3 MeV with essentially 100% acceptance. The kinematics allowed the mean value of Q to be determined to about 9 keV. Evidence is found for the effects of higher partial waves for Q>4 MeV. The very rapid rise of the total cross section to its maximum value within 0.5 MeV of threshold implies a very large eta-3He scattering length and hence the presence of a quasi-bound state extremely close to threshold.

2 data tables match query

Total cross section measurements.

Angular distribution asymmetry parameter defined as:. SIG(TOTAL)*(1+ASYM*COS(THETA(CM))/4*PI.


Precision measurement of the quasi-free p n --> d Phi reaction close to threshold.

Maeda, Y. ; Hartmann, M. ; Keshelashvili, I. ; et al.
Phys.Rev.Lett. 97 (2006) 142301, 2006.
Inspire Record 720728 DOI 10.17182/hepdata.31513

The quasi-free pn->dphi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal proton beam incident on a deuterium cluster-jet target and detecting a fast deuteron in coincidence with the K+K- decay of the phi-meson. The energy dependence of the total and differential cross sections are extracted for excess energies up to 80 MeV by determining the Fermi momentum of the target neutron on an event-by-event basis. Though these cross sections are consistent with s-wave production, the kaon angular distributions show the presence of p waves at quite low energy. Production on the neutron is found to be stronger than on the proton but not by as much as for the eta-meson.

0 data tables match query

Shape of the Lambda(1405) hyperon measured through its Sigma0 pi0 decay.

Zychor, I. ; Buscher, M. ; Hartmann, M. ; et al.
Phys.Lett.B 660 (2008) 167-171, 2008.
Inspire Record 750092 DOI 10.17182/hepdata.51635

The pp -> p K+ Y0 reaction has been studied for hyperon masses m(Y0)<1540 MeV/c2 at COSY-J\'ulich by using a 3.65 GeV/c circulating proton beam incident on an internal hydrogen target. Final states comprising two protons, one positively charged kaon and one negatively charged pion have been identified with the ANKE spectrometer. Such configurations are sensitive to the production of the ground state Lambda and Sigma0 hyperons as well as the Sigma0(1385) and Lambda(1405) resonances. Applying invariant- and missing-mass techniques, the two overlapping excited states can be separated unambiguously. The shape and position of the Lambda(1405) distribution, reconstructed cleanly from its Sigma0 pion0 decay, are similar to those found in other production modes and there is no obvious mass shift. This finding constitutes a challenging test for models that predict Lambda(1405) to be a two-state resonance.

2 data tables match query

Cross section for SIGMA(1385)0 production.

Cross section for LAMBDA(1405) production.


J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables match query

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

12 data tables match query

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…