Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.
The deuteron structure function F 2 d has been measured in 280 GeV μ + d interactions. Existing measurements of F 2 p , made with the same apparatus, are used to calculate F 2 p − F 2 n and F 2 n F 2 p . The ratio F 2 n F 2 p has a similar x dependence to that of earlier measurements at lower Q 2 .
No description provided.
No description provided.
No description provided.
About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the v μ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for v μ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result R P v = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.18 ± 0.04.
No description provided.
The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2 θ w = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants u L 2 and L 2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.
No description provided.
No description provided.
The production of J/ ϑ and ϑ′ has been measured in 250 GeV muon iron interactions. The measured total cross sections are σ ( μ N → μ J/ ϑ X)=0.74±0.14 nb and σ ( μ N → μϑ ′X)=0.16 ± 0.07 nb. An upper limit on the cross section times branching ratio for ϒ production of BR · σ ( μ N → μϒ X) < 5.2 × 10 −38 cm 2 (at 90% confidence level) is obtained. About half the J/ ϑ cross section is found to have Z ⩾ 0.95 (where Z = E (J/ ϑ / ν ). The first-order photon-gluon fusion model agrees well with the measured Q 2 and ν dependence of the J/ ϑ data and is used to extract the gluon momentum distribution. However, higher order QCD effects are needed to explain the Z distribution of the J/ ϑ and the observed broadening of the P t 2 distribution with decreasing Z . The decay angular distributions of the J/ ϑ are found to be flat in the s -channel frame, but there is evidence for polarisation in the t -channel frame.
NUMBERS ARE CROSS-SECTIONS FOR PSI AND PSI(PRIME) BUT CROSS-SECTION*BR.RATIO FOR THE UPSILON.
THE COHERENT PRODUCTION IS NOT SUBTRACTED.
THE COHERENT PRODUCTION IS SUBTRACTED.
Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.
The charm contribution to the nucleon structure function from the dimuon data.
No description provided.
No description provided.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
The proton structure function F 2 has been measured in the range 2.5 ⪕ Q 2 ⪕ 170 GeV 2 and 0.03 ⪕ x ⪕ 0.65 . Scaling violation is clearly seen in the data. Results of fits to leading-order QCD are presented, together with values of the scale-breaking parameter λ.
No description provided.
No description provided.
No description provided.
A measurement of the nucleon structure function F 2 on iron is presented. The data cover a kinematic range of 3.25 ⪕ Q 2 ⪕ 200 GeV 2 and 0.05 ⪕ x ⪕ 0.65 . The data clearly show scaling violation. Fits in leading-order QCD have been made and values for the scale breaking parameter λ are given.
No description provided.
No description provided.
No description provided.
A significant rate of forward proton and antiproton production has been observed in 120 and 280 GeV muon-proton scattering. The z and p T 2 distributions are presented. The dependence of the normalized production cross section on the muon variables x and Q 2 is studied.
No description provided.
No description provided.