Date

Study of s-Channel and t-Channel Helicity Conservation in the Diffractive Part of the Reaction pi+- p --> pi (n pi) at 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Heidelberg collaboration Grässler, H. ; Kirk, H. ; Otter, G. ; et al.
Nucl.Phys.B 95 (1975) 1-11, 1975.
Inspire Record 99495 DOI 10.17182/hepdata.31974

By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.

2 data tables

No description provided.

FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.


Evidence for Different Polarization Properties of the rho K and K* (890) pi States of the 1+ Wave in the Q Region

The Aachen-Berlin-CERN-London-Vienna collaboration Otter, G. ; Rudolph, G. ; Rumph, K. ; et al.
Nucl.Phys.B 93 (1975) 365-386, 1975.
Inspire Record 99251 DOI 10.17182/hepdata.32005

A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.

2 data tables

No description provided.

No description provided.


Spin-Parity Analysis of Diffractive n --> p pi- and the Question of a Parity-Change Rule

Ansorge, R.E. ; Carter, J.R. ; Neale, W.W. ; et al.
Phys.Rev.D 13 (1976) 1835, 1976.
Inspire Record 99426 DOI 10.17182/hepdata.24786

A spin-parity analysis is performed of the low-mass (≤ 1.75 GeV/c2) pπ− system in diffractive np→(pπ−)p using new data at 13 GeV/c and 20 GeV/c. In the context of a Deck-plus-resonances model a good fit to the pπ− angular moments is found only if the Gribov-Morrison parity-change rule does not hold and spin states up to j=52 are included. In particular the presence of a considerable fraction of spin-parity ½− state is indicated.

1 data table

DECK MODEL PLUS RESONANCES FIT TO DIFFRACTIVE EVENTS.


PRISM Plot Analysis of the Reaction pi+ p --> p pi+ pi+ pi- at 16-GeV/c

The AACHEN-BERLIN-BONN-CERN-CRACOW-HEIDELBERG collaboration Deutschmann, M. ; Schmitz, P. ; Schulte, R. ; et al.
Nucl.Phys.B 86 (1975) 221, 1975.
Inspire Record 104924 DOI 10.17182/hepdata.32122

A study of the reaction π + p → p π + π o at 16 GeV/ c incident momentum has been made using the prism plot analysis to reject background events arising from elastic and multineutral contaminations and to separate different reaction channels ( ϱ + p, g + p, Δ + π + , Δ ++ π o , π + (p π o ) DD ). Cross sections, invariant mass distributions and production and decay angular distributions are presented. For the channel corresponding to proton diffraction dissociation strong violation of both s - and t -channel helicity conservation is found for low values of the (p π o ) mass. We demonstrate that the prism plot method provides a better separation of background events than conventional methods using kinematic cuts.

2 data tables

STATISTICAL ERRORS ONLY.

No description provided.


Production of Nucleon Resonances by Single Diffraction Dissociation at the CERN ISR

Webb, R. ; Trilling, G. ; Telegdi, V. ; et al.
Phys.Lett.B 55 (1975) 331-335, 1975.
Inspire Record 91189 DOI 10.17182/hepdata.27915

The single diffraction dissociation process pp → (p π + π − )p has been studied at the CERN ISR at √ s = 45 GeV and 0.1 < − t < 0.6 GeV 2 . The reaction is dominated by nucleon resonance production: pp → pN (1520) and pp → pN(1688) with cross-sections (0.25 ± 0.08) mb and (0.56 ± 0.19) mb respectively.

2 data tables

DIFFERENTIAL CROSS SECTIONS FOR THREE RANGES OF <P PI+ PI-> MASS.

FROM BREIT-WIGNER PLUS BACKGROUND FITS. CORRECTIONS FOR OTHER DECAY MODES USE THE PDG 1974 TABLES FOR N(1520) AND N(1688).


Analysis of the Reaction K- p --> K- pi- pi+ p at 40-GeV/c

The CERN-Serpukhov Boson Spectrometer Group collaboration Antipov, Yu.M. ; Ascoli, G. ; Busnello, R. ; et al.
Nucl.Phys.B 86 (1975) 381-402, 1975.
Inspire Record 90643 DOI 10.17182/hepdata.32087

The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.

3 data tables

No description provided.

K** DEFINED BY 1.30 < M(K PI PI) < 1.54 GEV.

L IS DEFINED AS THE 2- STATE WITH 1.6 < M(K PI PI) < 1.9 GEV.


Pion and Nucleon Dissociation in $\pi^- p \to \pi^- \pi^+ \pi^- p$ at 205 GeV/c

Bingham, H.H. ; Chew, D.M. ; Fretter, W.B. ; et al.
Phys.Lett.B 51 (1974) 397-401, 1974.
Inspire Record 90046 DOI 10.17182/hepdata.27930

In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.

1 data table

No description provided.