Jet multiplicity distributions in top quark pair (t t-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton decay channels (e+ e-, mu+ mu-, and e+/- mu-/+). The absolute and normalized differential cross sections for t t-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential t t-bar b and t t-bar b b-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Normalized differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 60GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 inverse femtobarns, collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from ttW or ttZ decays. The ttW cross section is measured to be 382 +117 -102 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The ttZ cross section is measured to be 242 +65 -55 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the ttW and ttZ cross sections.
Expected yields after the final fit, compared to the observed data for OS t$\bar{\mathrm{t}}$Z final states. Here ``hf'' and ``lf'' stand for heavy and light flavors, respectively.
Expected yields after the final fit, compared to the observed data for SS t$\bar{\mathrm{t}}$W final states. The multiboson process includes WWW, WWZ, and W$^{\pm}$W$^{\pm}$; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.
Expected yields after the final fit, compared to the observed data for 3$\ell$ t$\bar{\mathrm{t}}$W and three and 4$\ell$ t$\bar{\mathrm{t}}$Z final states. The 4$\ell$ ``Z-veto'' channel has exactly one lepton pair consistent with a Z boson decay; the ``Z'' channel has two. The multiboson process includes WWW and WWZ; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.
A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.
Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.
Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.
Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.
A measurement is presented of differential cross sections for the Higgs boson (H) production in pp collisions at sqrt(s) = 8 TeV. The analysis exploits the H to gamma gamma decay in data corresponding to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities abs(eta) < 2.5, and with the photon of largest and next-to-largest transverse momentum (pt[gamma]) divided by the diphoton mass m[gamma-gamma] satisfying the respective conditions of pt[gamma] / m[gamma-gamma] > 1/3 and > 1/4, the total fiducial cross section is 32 +/- 10 fb.
Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of kinematic observables as measured in data and as predicted in SM simulations. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.
Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of $p_{\rm{T}}^{\gamma\gamma}$ as measured in data. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.
Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of |$\cos\theta^{\ast}$| as measured in data. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.
The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.
The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 inverse femtobarns, were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is A[c,y] = [0.33 +/- 0.26 (stat) +/- 0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.
The measured $t\bar{t}$ production asymmetry $A_c^y$.
A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for mu+ mu- decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 inverse femtobarns, respectively. The search is sensitive to Higgs bosons produced through the gluon fusion process or in association with a bb quark pair. No statistically significant excess is observed in the mu+ mu- mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan(beta) as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production. They are the most stringent limits obtained to date in this channel.
The 95% CL upper limit on tan B as a function of mA, after combining the data from the two event categories at the two centre-of-mass energies (7 and 8 TeV). The results are obtained in the framework of the mh-mod+ benchmark scenario.
The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to b quark associated production, obtained using data collected at swrt(s) = 8 TeV.
The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to gluon-fusion production, obtained using data collected at swrt(s) = 8 TeV.
The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.
The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.
The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.
A measurement of the underlying event (UE) activity in proton-proton collisions is performed using events with charged-particle jets produced in the central pseudorapidity region (abs(eta[jet]) < 2) and with transverse momentum 1<= pt[jet] < 100 GeV. The analysis uses a data sample collected at a centre-of-mass energy of 2.76 TeV with the CMS experiment at the LHC. The UE activity is measured as a function of pt[jet] in terms of the average multiplicity and scalar sum of transverse momenta (pt) of charged particles, with abs(eta) < 2 and pt > 0.5 GeV, in the azimuthal region transverse to the highest pt jet direction. By further dividing the transverse region into two regions of smaller and larger activity, various components of the UE activity are separated. The measurements are compared to previous results at 0.9 and 7 TeV, and to predictions of several Monte Carlo event generators, providing constraints on the modelling of the UE dynamics.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 2.76 TeV in the Transverse region.
Fully corrected average charged particle scalar Sum(pT) per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 2.76 TeV in the Transverse region.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 2.76 TeV in the TransMAX region.
A search for the production of a heavy B quark, having electric charge -1/3 and vector couplings to W, Z, and H bosons, is carried out using proton-proton collision data recorded at the CERN LHC by the CMS experiment, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The B quark is assumed to be pair produced and to decay in one of three ways: to tW, bZ, or bH. The search is carried out in final states with one, two, and more than two charged leptons, as well as in fully hadronic final states. Each of the channels in the exclusive final-state topologies is designed to be sensitive to specific combinations of the B quark-antiquark pair decays. The observed event yields are found to be consistent with the standard model expectations in all the final states studied. A statistical combination of these results is performed and upper limits are set on the cross section of the strongly produced B quark-antiquark pairs as a function of the B quark mass. Lower limits on the B quark mass between 740 and 900 GeV are set at a 95% confidence level, depending on the values of the branching fractions of the B quark to tW, bZ, and bH. Overall, these limits are the most stringent to date.
Event yields for the electron + jets categories.
Event yields for the muon + jets categories.
Event yields for the same-sign dilepton e+e category.