Showing 4 of 4 results
An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.
Efficiencies of the various displaced dimuon trigger paths and their combination as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.
Overall efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The solid curves show efficiencies achieved with the 2022 Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.
Comparison of the observed (black points) and expected (histograms) numbers of events in nonoverlapping $m_{\mu \mu}$ intervals in the STA-STA dimuon category, in the signal region optimized for the HAHM model. Yellow and green stacked filled histograms represent mean expected background contributions from QCD and DY, respectively, while statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Comparison of the observed (black points) and expected (histograms) numbers of events in nonoverlapping $m^{corr}_{\mu\mu}$ intervals in the STA-STA dimuon category, in the signal region optimized for the RPV SUSY model. Yellow and green stacked filled histograms represent mean expected background contributions from QCD and DY, respectively, while statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Distribution of min($d_0 / \sigma_{d_0}$) for TMS-TMS dimuons with $|\Delta\Phi| < \pi/30$, for events in all mass intervals combined, for both the validation (min($d_0 / \sigma_{d_0}$) < 6) and signal (min($d_0 / \sigma_{d_0}$) > 6) regions. The number of observed events (black circles) is overlaid with the stacked histograms showing the expected numbers of QCD (yellow) and DY (green) background events. Statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. Events are required to satisfy all nominal selection criteria with the exception of the $d_0 / \sigma_{d_0}$ requirement. The last bin includes events in the histogram overflow.
Distribution of min($d_0 / \sigma_{d_0}$) for TMS-TMS dimuons with $|\Delta\Phi| < \pi/4$, for events in all mass intervals combined, for both the validation (min($d_0 / \sigma_{d_0}$) < 6) and signal (min($d_0 / \sigma_{d_0}$) > 6) regions. The number of observed events (black circles) is overlaid with the stacked histograms showing the expected numbers of QCD (yellow) and DY (green) background events. Statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. Events are required to satisfy all nominal selection criteria with the exception of the $d_0 / \sigma_{d_0}$ requirement. The last bin includes events in the histogram overflow.
Comparison of observed and expected numbers of events in bins of $m^{corr}_{\mu\mu}$ in the TMS-TMS dimuon category, in the signal regions optimized for the RPV SUSY model. The number of observed events (black circles) is overlaid with the stacked filled histograms showing the expected numbers of QCD (yellow) and DY (green) background events in bins of $m^{corr}_{\mu\mu}$ in min($d_0 / \sigma_{d_0}$) bin: 6-10. Hatched histograms show statistical uncertainties in the total expected background. Contributions expected from signal events predicted by the RPV SUSY model with the parameters indicated in the legends are shown as red and blue histograms. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Comparison of observed and expected numbers of events in bins of $m^{corr}_{\mu\mu}$ in the TMS-TMS dimuon category, in the signal regions optimized for the RPV SUSY model. The number of observed events (black circles) is overlaid with the stacked filled histograms showing the expected numbers of QCD (yellow) and DY (green) background events in bins of $m^{corr}_{\mu\mu}$ in min($d_0 / \sigma_{d_0}$) bin: 10-20. Hatched histograms show statistical uncertainties in the total expected background. Contributions expected from signal events predicted by the RPV SUSY model with the parameters indicated in the legends are shown as red and blue histograms. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Comparison of observed and expected numbers of events in bins of $m^{corr}_{\mu\mu}$ in the TMS-TMS dimuon category, in the signal regions optimized for the RPV SUSY model. The number of observed events (black circles) is overlaid with the stacked filled histograms showing the expected numbers of QCD (yellow) and DY (green) background events in bins of $m^{corr}_{\mu\mu}$ in min($d_0 / \sigma_{d_0}$) bin: >20. Hatched histograms show statistical uncertainties in the total expected background. Contributions expected from signal events predicted by the RPV SUSY model with the parameters indicated in the legends are shown as red and blue histograms. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Comparison of observed and expected numbers of events in bins of $m_{\mu\mu}$ in the TMS-TMS dimuon category, in the signal regions optimized for the HAHM. The number of observed events (black circles) is overlaid with the stacked filled histograms showing the expected numbers of QCD (yellow) and DY (green) background events in bins of $m_{\mu\mu}$ in min($d_0 / \sigma_{d_0}$) bin: 6-10. Hatched histograms show statistical uncertainties in the total expected background. Signal contributions expected from simulated $H \rightarrow Z_DZ_D$ events with the parameters indicated in the legends are shown as red and blue histograms. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Comparison of observed and expected numbers of events in bins of $m_{\mu\mu}$ in the TMS-TMS dimuon category, in the signal regions optimized for the HAHM. The number of observed events (black circles) is overlaid with the stacked filled histograms showing the expected numbers of QCD (yellow) and DY (green) background events in bins of $m_{\mu\mu}$ in min($d_0 / \sigma_{d_0}$) bin: 10-20. Hatched histograms show statistical uncertainties in the total expected background. Signal contributions expected from simulated $H \rightarrow Z_DZ_D$ events with the parameters indicated in the legends are shown as red and blue histograms. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
Comparison of observed and expected numbers of events in bins of $m_{\mu\mu}$ in the TMS-TMS dimuon category, in the signal regions optimized for the HAHM. The number of observed events (black circles) is overlaid with the stacked filled histograms showing the expected numbers of QCD (yellow) and DY (green) background events in bins of $m_{\mu\mu}$ in min($d_0 / \sigma_{d_0}$) bin: >20. Hatched histograms show statistical uncertainties in the total expected background. Signal contributions expected from simulated $H \rightarrow Z_DZ_D$ events with the parameters indicated in the legends are shown as red and blue histograms. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 10\ GeV$, in the STA-STA and TMS-TMS dimuon categories in 2022 data and their combination.The median expected limits obtained from the STA-STA and TMS-TMS dimuon categories are shown as dashed blue and red curves, respectively; the combined median expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 20\ GeV$, in the STA-STA and TMS-TMS dimuon categories in 2022 data and their combination.The median expected limits obtained from the STA-STA and TMS-TMS dimuon categories are shown as dashed blue and red curves, respectively; the combined median expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 30\ GeV$, in the STA-STA and TMS-TMS dimuon categories in 2022 data and their combination.The median expected limits obtained from the STA-STA and TMS-TMS dimuon categories are shown as dashed blue and red curves, respectively; the combined median expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 40\ GeV$, in the STA-STA and TMS-TMS dimuon categories in 2022 data and their combination.The median expected limits obtained from the STA-STA and TMS-TMS dimuon categories are shown as dashed blue and red curves, respectively; the combined median expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 50\ GeV$, in the STA-STA and TMS-TMS dimuon categories in 2022 data and their combination.The median expected limits obtained from the STA-STA and TMS-TMS dimuon categories are shown as dashed blue and red curves, respectively; the combined median expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 60\ GeV$, in the STA-STA and TMS-TMS dimuon categories in 2022 data and their combination.The median expected limits obtained from the STA-STA and TMS-TMS dimuon categories are shown as dashed blue and red curves, respectively; the combined median expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 10\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 20\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 30\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 40\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 50\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 60\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(pp \rightarrow \tilde{q}\bar{\tilde{q}})B(\tilde{q} \rightarrow q\tilde{\chi}^{0}_{1})$ as a function of $c\tau(\tilde{\chi}^{0}_{1})$ in the RPV SUSY model, for $B(\tilde{\chi}^{0}_{1} \rightarrow \mu^{+}\mu^{-}\nu) = 0.5$ and $m(\tilde{q}) = 125\ GeV$. The observed limits for various $m(\tilde{\chi}^{0}_{1})$ indicated in the legends are shown as solid curves. The median expected limits and their 68 and 95% quantiles are shown, respectively, as dashed black curves and green and yellow bands for the case of $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$ and omitted for other neutralino masses for clarity. The predicted cross section for $m(\tilde{q}) = 125\ GeV$ is 7200 pb, and falls outside the y-axis range.
The 95% CL upper limits on $\sigma(pp \rightarrow \tilde{q}\bar{\tilde{q}})B(\tilde{q} \rightarrow q\tilde{\chi}^{0}_{1})$ as a function of $c\tau(\tilde{\chi}^{0}_{1})$ in the RPV SUSY model, for $B(\tilde{\chi}^{0}_{1} \rightarrow \mu^{+}\mu^{-}\nu) = 0.5$ and $m(\tilde{q}) = 200\ GeV$. The observed limits for various $m(\tilde{\chi}^{0}_{1})$ indicated in the legends are shown as solid curves. The median expected limits and their 68 and 95% quantiles are shown, respectively, as dashed black curves and green and yellow bands for the case of $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$ and omitted for other neutralino masses for clarity. The predicted cross section for $m(\tilde{q}) = 200 GeV$ is 840 pb, and falls outside the y-axis range.
The 95% CL upper limits on $\sigma(pp \rightarrow \tilde{q}\bar{\tilde{q}})B(\tilde{q} \rightarrow q\tilde{\chi}^{0}_{1})$ as a function of $c\tau(\tilde{\chi}^{0}_{1})$ in the RPV SUSY model, for $B(\tilde{\chi}^{0}_{1} \rightarrow \mu^{+}\mu^{-}\nu) = 0.5$ and $m(\tilde{q}) = 350\ GeV$. The observed limits for various $m(\tilde{\chi}^{0}_{1})$ indicated in the legends are shown as solid curves. The median expected limits and their 68 and 95% quantiles are shown, respectively, as dashed black curves and green and yellow bands for the case of $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$ and omitted for other neutralino masses for clarity. The predicted cross section for $m(\tilde{q}) = 350\ GeV$ is 50 pb, and falls outside the y-axis range.
The 95% CL upper limits on $\sigma(pp \rightarrow \tilde{q}\bar{\tilde{q}})B(\tilde{q} \rightarrow q\tilde{\chi}^{0}_{1})$ as a function of $c\tau(\tilde{\chi}^{0}_{1})$ in the RPV SUSY model, for $B(\tilde{\chi}^{0}_{1} \rightarrow \mu^{+}\mu^{-}\nu) = 0.5$ and $m(\tilde{q}) = 700\ GeV$. The observed limits for various $m(\tilde{\chi}^{0}_{1})$ indicated in the legends are shown as solid curves. The median expected limits and their 68 and 95% quantiles are shown, respectively, as dashed black curves and green and yellow bands for the case of $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$ and omitted for other neutralino masses for clarity. The gray horizontal line indicates the theoretical value of the squark-antisquark production cross section with the uncertainties shown as the gray shaded band.
The 95% CL upper limits on $\sigma(pp \rightarrow \tilde{q}\bar{\tilde{q}})B(\tilde{q} \rightarrow q\tilde{\chi}^{0}_{1})$ as a function of $c\tau(\tilde{\chi}^{0}_{1})$ in the RPV SUSY model, for $B(\tilde{\chi}^{0}_{1} \rightarrow \mu^{+}\mu^{-}\nu) = 0.5$ and $m(\tilde{q}) = 1150\ GeV$. The observed limits for various $m(\tilde{\chi}^{0}_{1})$ indicated in the legends are shown as solid curves. The median expected limits and their 68 and 95% quantiles are shown, respectively, as dashed black curves and green and yellow bands for the case of $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$ and omitted for other neutralino masses for clarity. The gray horizontal line indicates the theoretical value of the squark-antisquark production cross section with the uncertainties shown as the gray shaded band.
The 95% CL upper limits on $\sigma(pp \rightarrow \tilde{q}\bar{\tilde{q}})B(\tilde{q} \rightarrow q\tilde{\chi}^{0}_{1})$ as a function of $c\tau(\tilde{\chi}^{0}_{1})$ in the RPV SUSY model, for $B(\tilde{\chi}^{0}_{1} \rightarrow \mu^{+}\mu^{-}\nu) = 0.5$ and $m(\tilde{q}) = 1600\ GeV$. The observed limits for various $m(\tilde{\chi}^{0}_{1})$ indicated in the legends are shown as solid curves. The median expected limits and their 68 and 95% quantiles are shown, respectively, as dashed black curves and green and yellow bands for the case of $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$ and omitted for other neutralino masses for clarity. The gray horizontal line indicates the theoretical value of the squark-antisquark production cross section with the uncertainties shown as the gray shaded band.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA to TMS association procedure, as a function of generated $L_{xy}$, in all HAHM signal samples combined.
Efficiencies of the Run 2 and Run 3 displaced dimuon triggers as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 50\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.
Efficiencies of the Run 2 (2018) (red) and Run 3 (2022) (black) sets of displaced dimuon triggers as a function of $m(Z_D)$ for the HAHM signal events with $c\tau = 1\ cm$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the indicated set of trigger paths. The lower panel shows the ratio of the Run 3 (2022) efficiency to the Run 2 (2018) efficiency.
Efficiencies of the Run 2 (2018) (red) and Run 3 (2022) (black) sets of displaced dimuon triggers as a function of $m(Z_D)$ for the HAHM signal events with $c\tau = 10\ m$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the indicated set of trigger paths. The lower panel shows the ratio of the Run 3 (2022) efficiency to the Run 2 (2018) efficiency.
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM signal with $m(Z_D) = 20\ GeV$ in different years of data taking. Efficiencies are computed as the ratios of the number of simulated signal events in which at least one dimuon candidate passes all 2016 (dashed green), 2018 (dashed red), and 2022 (solid black) trigger and offline selection criteria to the total number of simulated signal events. The lower panel shows the ratio of the 2022 efficiency to the 2018 efficiency (dashed red) and to the 2016 efficiency (dashed green).
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM signal with $m(Z_D) = 50\ GeV$ in different years of data taking. Efficiencies are computed as the ratios of the number of simulated signal events in which at least one dimuon candidate passes all 2016 (dashed green), 2018 (dashed red), and 2022 (solid black) trigger and offline selection criteria to the total number of simulated signal events. The lower panel shows the ratio of the 2022 efficiency to the 2018 efficiency (dashed red) and to the 2016 efficiency (dashed green).
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM model with $m(Z_D) = 10\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM model with $m(Z_D) = 20\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM model with $m(Z_D) = 30\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM model with $m(Z_D) = 40\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM model with $m(Z_D) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(Z_D)$ for the HAHM model with $m(Z_D) = 60\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 125\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 200\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 350\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 700\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 1150\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 1600\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 50\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 700\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 500\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 1150\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 500\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Overall selection efficiencies as a function of $c\tau(\tilde{\chi}^{0}_{1})$ for the RPV SUSY model, for events with $m(\tilde{q}) = 1600\ GeV$ and $m(\tilde{\chi}^{0}_{1}) = 500\ GeV$. The plot shows efficiencies of the two dimuon categories, TMS-TMS (dashed red) and STA-STA (dashed green), as well as their combination (solid black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the TMS-TMS dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ smaller than 20 cm in the HAHM signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the STA-STA dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ smaller than 20 cm in the HAHM signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the TMS-TMS dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ 20-70 cm in the HAHM signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the STA-STA dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ 20-70 cm in the HAHM signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the STA-STA dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ 70-500 cm in the HAHM signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the TMS-TMS dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ smaller than 20 cm in the RPV SUSY signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the STA-STA dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ smaller than 20 cm in the RPV SUSY signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the TMS-TMS dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ 20-70 cm in the RPV SUSY signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the STA-STA dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ 20-70 cm in the RPV SUSY signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies in the STA-STA dimuon category as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true}$ 70-500 cm in the RPV SUSY signal model. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
The first search for singly produced narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75-9.00 TeV. The results provide the first mass limits on a right-handed boson Z$_{\mathrm{R}}$ decaying to three gluons and on an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.
Observed and expected (background-only fitted) invariant mass spectra of trijet events. Data spectra from three years are fitted separately and the sum is shown in the figure. The fitting function used is ${ d N}/{ d m} = p_{0}(1-x)^{p_{1}}/x^{\sum_{i=2}^{3} p_{i}\log^{i-2}(x)}$. The fitted parameters are $p_{1} = 7.350, p_{2} = 6.926, p_{3} = 0.388$ for 2016, $p_{1} = 8.308, p_{2} = 5.931, p_{3} = 0.167$ for 2017 and $p_{1} = 8.770, p_{2} = 5.617, p_{3} = 0.106$ for 2018. $p_{0}$ is the normalization parameter and its exact value is irrelevant.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 3\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions assuming SM-like couplings are depicted with the red curve.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 0.01\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions are depicted with the red curve.
Observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Mass exclusion ranges of the benchmark signal scenarios are depicted with hatched areas inside the black contours.
Observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Mass exclusion ranges of the benchmark signal scenarios are depicted with hatched areas inside the black contours.
Efficiencies of the selection requirements on the benchmark signal processes: $Z_{R} \to ggg$ with nominal width ($\Gamma_{X}/m_{X}\sim 3\%$). A value of -1 means that the corresponding efficiency is not calculated for this year.
Efficiencies of the selection requirements on the benchmark signal processes: $Z_{R} \to ggg$ with narrow width ($\Gamma_{X}/m_{X}\sim 0.01\%$). A value of -1 means that the corresponding efficiency is not calculated for this year.
Efficiencies of the selection requirements on the benchmark signal processes: $G_{KK} \to {\varphi}(gg)g$, where $\varphi$ is the radion. A value of -1 means that the corresponding efficiency is not calculated for this year.
Efficiencies of the selection requirements on the benchmark signal processes: $q^{*} \to V(qq)q$, where $V$ is a beyond-the-SM vector boson. A value of -1 means that the corresponding efficiency is not calculated for this year.
Acceptance of the signal selection requirement $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$ on the benchmark signal process $Z_{R} \to ggg$. The acceptance is defined as $\mathcal{A} = N$(events with $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$)/$N$(events generated in the full phase space defined by the CMS default generator settings).
Acceptance of the signal selection requirement $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$ on the benchmark signal process $G_{KK} \to {\varphi}(gg)g$.
Acceptance of the signal selection requirement $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$ on the benchmark signal process $q^{*} \to V(qq)q$.
Observed local significance for a 3-body decay $ggg$ resonance, shown for resonances with nominal width (blue solid line) and narrow width (red dashed line).
Observed local significance for a cascade decay $ggg$ resonance.
Observed local significance for a cascade decay $qqq$ resonance.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.2$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.3$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.4$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.5$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.6$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.7$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.8$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance $m_{Y} / m_{X} = 0.2$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.3$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.4$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.5$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.6$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.7$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.8$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal
Cut flow table of the selection requirments for the $Z_{R}$ model scenarios. Values shown are absolute efficiencies, e.g., values shown in the column of 'Efficiency ($\Delta_{R}^{max} < 3.0$)' represent the cumulative efficiencies achieved through all selection requirements applied up to and including the current selection criterion.
Cut flow table of the selection requirments for the $G_{KK}$ model scenarios. Values shown are absolute efficiencies, e.g., values shown in the column of 'Efficiency ($\Delta_{R}^{max} < 3.0$)' represent the cumulative efficiencies achieved through all selection requirements applied up to and including the current selection criterion.
Cut flow table of the selection requirments for the $q^{*}$ model scenarios. Values shown are absolute efficiencies, e.g., values shown in the column of 'Efficiency ($\Delta_{R}^{max} < 3.0$)' represent the cumulative efficiencies achieved through all selection requirements applied up to and including the current selection criterion.
Predicted production cross section of the benchmark signal process $pp \to Z_{R} \to ggg$.
Predicted production cross section of the benchmark signal process $pp \to G_{KK} \to \varphi(gg)g$.
Predicted production cross section of the benchmark signal process $pp \to q^{*} \to V(qq)q$.
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Background estimation and observed number of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Background estimation and observed number of events in the TMS-TMS dimuon category in 2016 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Background estimation and observed number of events in the TMS-TMS dimuon category in 2018 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Correspondence between the mass intervals in the TMS-TMS category and the parameters of the simulated signal samples.
Correspondence between the probed LLP masses and the chosen mass intervals in the TMS-TMS category.
Background estimation and observed number of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Number of events passing consecutive sets of selection criteria for 2018 collision data and the signal process $\Phi(125) \rightarrow XX(20\ GeV, c\tau = 13\ cm) \rightarrow \mu\mu$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events, N(events), the event yields of the individual dimuon vertex categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are independently counted for each category.
Number of events passing consecutive sets of selection criteria, in 2018 data and in a sample of simulated $\Phi \rightarrow XX \rightarrow \mu\mu$ signal events with $m(H) = 125\ GeV$, $m(X) = 20\ GeV$, and $c\tau = 13\ cm$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events $N(\text{total})$, the event yields in the individual dimuon categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are counted independently for each category.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.
Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.
Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.
W tagging efficiency, averaged for different spin and width hypotheses. The Standard deviation shown below is the standard deviation between the W tagging efficiencies for different spin and width hypotheses.
Observed and expected (background-only fitted) invariant mass spectra of Wgamma events. The fitted function is ${ d N}/{ d m} = p_{0} * (m/\sqrt{s})^{p_{1} + p_{2} * \log(m/\sqrt{s}) + p_{3} * \log^{2}(m/\sqrt{s})}$
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for narrow scalar Wgamma resonances. Limits are compared to predicted cross sections for the heavy scalar triplet model described in arXiv:1912.08234
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for broad scalar Wgamma resonances.
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for narrow vector Wgamma resonances. Limits are compared to predicted cross sections for the heavy vector triplet model described in arXiv:1912.08234
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for broad vector Wgamma resonances.
Expected and observed model-independent 95% CL upper limits on the product of the cross section, branching fraction and signal acceptance for general Wgamma resonances.
Expected and observed model-independent 95% CL upper limits on the product of the cross section, branching fraction, signal acceptance and W tagging efficiency for general Jgamma resonances.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.