The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.
Measured invariant cross section for P production.
Measured invariant cross section for DEUT production.
Measured invariant cross section for PBAR production.
Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Charm has been tagged by reconstructing D^{*+}, D^0, D^{+} and D_s^+ (+ c.c.) charm mesons. The charm hadrons were measured in the kinematic range p_T(D^{*+},D^0,D^{+}) > 3 GeV, p_T(D_s^+)>2 GeV and |\eta(D)| < 1.6 for 1.5 < Q^2 < 1000 GeV^2 and 0.02 < y < 0.7. The production cross sections were used to extract charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p_T(D) and \eta(D) in order to determine the open-charm contribution, F_2^{c\bar{c}}(x,Q^2), to the proton structure function F_2.
Production cross section for all D0 mesons, those not originating fom D* decays and those originating from D* decays.
Production cross section for additional D* mesons (not decaying to D0) and all D* mesons.
Production cross section for D+ mesons.
The production of energetic neutrons in $ep$ collisions has been studied with the ZEUS detector at HERA. The neutron energy and $p_T^2$ distributions were measured with a forward neutron calorimeter and tracker in a $40 \pb^{-1}$ sample of inclusive deep inelastic scattering (DIS) data and a $6 \pb^{-1}$ sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper $p_T^2$ distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data.
Ratio of leading neutron to inclusive cross sections integrated to the full PT range.
Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.
Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.
The production of D*+-(2010) mesons in ep scattering in the range of exchanged photon virtuality 0.05 < Q^2 < 0.7 GeV^2 has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The decay channels D*+ -> D0 pi+ with D0 -> K- pi+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q^2, inelasticity, y, transverse momentum of the D* meson, p_T(D*), and pseudorapidity of the D* meson, eta(D*), have been measured in the kinematic region 0.02 < y < 0.85, 1.5 < p_T(D*) < 9.0 GeV and |eta(D*)| < 1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes.
Total cross section measurement.. The second DSYS error is due to the uncertainty in the branching ratio.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of Y.
Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q^2 > 125 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb^-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q^2 and the jet transverse energy, E_T,B^jet. The dependence on R of the inclusive-jet cross section has been measured for Q^2 > 125 and 500 GeV^2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 <= R <= 1. A value of alpha_s(M_Z) has been extracted from the measurements of the inclusive-jet cross-section dsigma/dQ^2 with R=1 for Q^2 > 500 GeV^2: alpha_s(M_Z) = 0.1207 +- 0.0014 (stat.) -0.0033 +0.0035 (exp.) -0.0023 +0.0022 (th.). The variation of alpha_s with E_T,B^jet is in good agreement with the running of alpha_s as predicted by QCD.
No description provided.
No description provided.
No description provided.
The production of the neutral strange hadrons $K^{0}_{S}$, $\Lambda$ and $\bar{\Lambda}$ has been measured in $ep$ collisions at HERA using the ZEUS detector. Cross sections, baryon-to-meson ratios, relative yields of strange and charged light hadrons, $\Lambda$ ($\bar{\Lambda}$) asymmetry and polarization have been measured in three kinematic regions: $Q^2 > 25 \gev^2$: $5 < Q^2 < 25 \gev^2$: and in photoproduction ($Q^2 \simeq 0$). In photoproduction the presence of two hadronic jets, each with at least $5 \gev$ transverse energy, was required. The measurements agree in general with Monte Carlo models and are consistent with measurements made at $e^+ e^-$ colliders, except for an enhancement of baryon relative to meson production in photoproduction.
Differential K0S cross section in DIS events as a function of transverse momentum (lab). for Q**2 from 5 to 25 GeV**2.
Differential K0S cross section in DIS events as a function of transverse momentum (lab). for Q**2 > 25 GeV**2.
Differential K0S cross section in DIS events as a function of pseudorapidity (lab). for Q**2 from 5 to 25 GeV**2.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.
The double differential cross section for the 96-97 E+ P NC scattering data.
The double differential cross section for the 96-97 E+ P NC scattering data.
The double differential cross section for the 96-97 E+ P NC scattering data.
Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q2 > 125 GeV2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. Jets were identified in the Breit frame using the kt cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q2. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions.
Dijet cross section as a function of Q**2 in the Breit frame.
Dijet cross section as a function of Bjorken X in the Breit frame.
Dijet cross section as a function of the mean ET of the jets in the Breit frame.
Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons in two-photon collisions with the L3 detector at LEP are presented. The inclusive differential cross sections for Lambda and Xi- are measured as a function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event is determined in the kinematic range 0.4 GeV < pt< 2.5 GeV, |eta| < 1.2. Overall agreement with the theoretical models and Monte Carlo predictions is observed. A search for inclusive production of the pentaquark theta+(1540) in two-photon collisions through the decay theta+ -> proton K0s is also presented. No evidence for production of this state is found.
Differential cross section for LAMBDA production.
Differential cross section for LAMBDA production.
Differential cross section for XI- production.