An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .
The second DSYS error is the theoretical error.
We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.
Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.
Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.
SIN2TW determined from the asymmetry measurement.
In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.
We have studied the hadronic production of charmed mesons in the NA 32 experiment at CERN. A special trigger together with a high resolution vertex detector consisting of charge coupled devices and silicon microstrip detectors allowed the selection of very clean samples of charmed mesons. We have collected 852 fully reconstructed decays: 60Ds+→K+K−π+, 543D°→K−π+ andK−π+π−π+ as well as 249D+→K−π+π+ (or charge conjugate). 147 mesons out of our\({{D^0 } \mathord{\left/ {\vphantom {{D^0 } {\bar D^0 }}} \right. \kern-\nulldelimiterspace} {\bar D^0 }}\) sample were produced via chargedD* state. For all charmed mesons we determine the total production cross-section and study thexF andpt2 distributions.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.
The transverse energy distributions have been measured for interactions of 32 S nuclei with Al, Ag, W, Pt, Pb, and U targets, at an incident energy of 200 GeV per nucleon in the pseudorapidity region −0.1 < ν lab < 5.5. These distributions are compared with those for 16 OW interactions in the same pseudorapidity region and with earlier measurements performed with 16 O and 32 S projectiles in the region −0.1 < ν lab < 2.9. These comparisons provide both a better understanding of the dynamics involved and improved estimates of stopping power and energy density.
No description provided.
No description provided.
No description provided.
We present measurement of the π0γ*γ, ηγ*γ and η′γ*γ form factors. The π0-form factor is for the first time observed in the space-like region. The transition form factor of the η-meson is determined from its decay modes π+π−π0, π+π−γ and the neutral decay mode γγ. The decay of the η′ is observed in the decay channels ργ, ηπ+π− with η→γγ and in the four charged prong final state stemming from ηπ+π− with the η decaying into π+π−(π0/γ). All form factors agree well with a simple ρ-pole predicted by the vector meson dominance model and also with the QCD inspired Brodsky-Lepage model.
No description provided.
No description provided.
No description provided.
We have determined mW=79.91±0.39 GeV/c2 from an analysis of W→eν and W→μν data from the Collider Detector at Fermilab in p¯p collisions at a c.m. energy of √s =1.8 TeV. This result, together with the world-average Z mass, determines the weak mixing angle to be sin2θW=0.232±0.008. Bounds on the top-quark mass are discussed.
Combining W mass result with world-average Z mass (91.191 GEV).
We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.
Data requested from the authors.
Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.