Diffractive dissociation of virtual photons, gamma* p-->Xp, has been studied in ep interactions with the ZEUS detector at HERA using an integrated luminosity of approx. 10 pb^-1. The data cover photon virtualities 0.17 < Q^2< 0.70 GeV^2 and 3 < Q^2< 80 GeV^2 with 3<M_X<38 GeV, where M_X is the mass of the hadronic final state.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 0.17 to 0.70 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 3 to 9 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 9 to 80 GeV**2.
The process e+ e- -> e+ e- Z/gamma* is studied with the OPAL detector at LEP at a centre of mass energy of sqrt(s) = 189 GeV. The cross-section times the branching ratio of the Z/gamma* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 +/- 0.3 +/- 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 +/- 0.2 +/- 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables s-hat, t-hat, and u-hat are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess e gamma -> e Z/gamma* are derived.
Measured values of the cross section times the branching ratio for the (Z0/GAMMA*) decay into hadrons within the restricted kinematic limits.
Differential cross-section dsig_ee/dm_qq.
Differential cross-section dsigma_ee/dsqrt(shat).
We report on a measurement of the mass dependence of the forward-backward charge asymmetry, A_FB, and production cross section dsigma/dM for e+e- pairs with mass M_ee>40 GeV/c2. The data sample consists of 108 pb-1 of p-pbar collisions at sqrt(s)=1.8 TeV taken by the Collider Detector at Fermilab during 1992-1995. The measured asymmetry and dsigma/dM are compared with the predictions of the Standard Model and a model with an extra Z' gauge boson.
The E+ E- production cross section and the forward-backward asymmetry. The errors contain the statistical and systematic uncertainties combined in quadrature, but not the additional uncertainty of the luminosity.
The forward, backward and total production cross sections for dielectron production for the mass regions above 105 GeV. The errors contain the statistical and systematic uncertainties combined in quadrature, but not the additional uncertainty of the luminosity.
The production cross section for di-muons for the mass region above 105 GeV. The errors contain the statistical and systematic uncertainties combined in quadrature, but not the additional uncertainty of the luminosity.
We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 $pb^{-1}$ of $p\bar{p}$ collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both $p\bar{p} \to \gamma \gamma + X$ and $p \bar{p} \to \gamma \gamma + W/Z$. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale $\sqrt{F}$ in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for $H \to \gamma \gamma$. Finally, we set a lower limit on the mass of a 'bosophilic' Higgs boson (e.g. one which couples only to $\gamma, W,$ and $Z$ bosons with standard model couplings) of 82 GeV/$c^2$ at 95% confidence level.
No description provided.
No description provided.
Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).
The differential dijet cross section dsig/dZP1.
The differential dijet cross section dsig/dlog10(x).
The differential dijet cross section dsig/dlog10(xi).
Results are presented from analyses of jet data produced in pbarp collisions at sqrt{s} = 630 and 1800 GeV collected with the DO detector during the 1994-95 Fermilab Tevatron Collider run. We discuss details of detector calibration, and jet selection criteria in measurements of various jet production cross sections at sqrt{s} = 630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distributions, and the ratio of inclusive jet cross sections at sqrt{s} = 630 and 1800 GeV are compared to next-to-leading-order QCD predictions. The order alpha_s^3 calculations are in good agreement with the data. We also use the data at sqrt{s} = 1800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at the 95% confidence level.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) < 0.5 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) 0.1 to 0.7 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET and XT for ABS(ETARAP) < 0.5 at c.m. energy 630 GeV.
We present a measurement of the cross section for production of two or more jets as a function of dijet mass, based on an integrated luminosity of 86 pb^-1 collected with the Collider Detector at Fermilab. Our dijet mass spectrum is described within errors by next-to-leading order QCD predictions using CTEQ4HJ parton distributions, and is in good agreement with a similar measurement from the D0 experiment.
The differential cross section for two or more jets as a function of the dijet mass.
The total hadronic cross-section sigma_gg(W) for the interaction of real photons, gg->hadrons, is measured for gg centre-of-mass energies 10<W<110 GeV. The cross-section is extracted from a measurement of the process e+e- -> e+e-g*g* -> e+e- hardrons, using a luminosity function for the photon flux together with form factors for extrapolating to real photons (Q^2=0 GeV^2). The data were taken with the OPAL detector at LEP at e+e- centre-of-mass energies 161, 172 and 183 GeV. The cross-section sigma_gg(W) is compared with Regge factorisation and with the energy dependence observed in gp and pp interactions. The data are also compared to models which predict a faster rise of sigma_gg(W) compared to gp and pp interactions due to additional hard gg interactions not present in hadronic collisions.
No description provided.
No description provided.
The cross section for the photoproduction of events containing three jets with a three-jet invariant mass of M_3J > 50 GeV has been measured with the ZEUS detector at HERA. The three-jet angular distributions are inconsistent with a uniform population of the available phase space but are well described by parton shower models and O(alpha alpha_s^2) pQCD calculations. Comparisons with the parton shower model indicate a strong contribution from initial state radiation as well as a sensitivity to the effects of colour coherence.
Cross section in the specified kinematic range.
The measured 3-jet cross-section w.r.t. the 3-jet invariant mass.
The measured distribution in THETA(P=3).
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.