None
No description provided.
The Track Sensitive Target technique has been used to isolate 5000 events from the reaction π + p→ π + p π 0 π 0 at 4 GeV/ c . Channel cross sections are measured. The data agree with predictions from phase-shift analyses of π + π − data: the effect of the S ∗ is clearly seen. There is strong evidence against any narrow ϵ below 1 GeV/ c 2 .
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
None
SIG OBTAINED FROM INTEGRATION OF D(SIG)/D(T).
No description provided.
No description provided.
We observe a K−π+ state at 1786 ± 8 MeV with a width 95 ± 31 MeV in the reaction K−p→K−π+n at 6 GeV/c, from an experiment carried out at the Brookhaven National Laboratory multiparticle spectrometer.
ERROR INCLUDES SYSTEMATIC NORMALIZATION UNCERTAINTY.
We have found 431 events of the reaction K+d→K0pps at 3.8−GeVc K+ beam momentum in a 295 000-frame exposure of the Argonne National Laboratory 30-in. deuterium-filled bubble chamber. The event sample consists of one- and two-prong events with a visible K0 decaying to π+π− The total and differential cross sections are found after correction for unseen K0's and for efficiencies in the scanning-measuring-fitting chain. Comparisons of the data are made to an SU(3) sum rule, a Regge model, and data for K−p→K¯0n.
No description provided.
GLAUBER SCREENING AND PAULI EXCLUSION PRINCIPLE CORRECTIONS ARE REQUIRED TO YIELD THE K+ N CHARGE EXCHANGE CROSS SECTION. THE GLAUBER CORRECTION IMPLIES AN INCREASE IN THE CROSS SECTIONS BY THE FACTOR 1.016. THE PAULI CORRECTION IS SLIGHT EXCEPT AT LOW -T (<0.2 GEV**2) WHERE IT IS LARGE AND UNCERTAIN.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.