Using the ARGUS detector at DORIS we have obtained evidence for a resonance which decays into an F meson and a photon. The observed mass is 2109 ± 9 ± 7 MeV, which is 144 ± 9 ± 7 MeV greater than the F meson mass. Its properties are consistent with those of the F ∗ meson with J P = 1 − .
No description provided.
We have measured correlations between single high- p T (1.5< p T <3.5 GeV/ c ) trigger particles on one side of the beam line and groups of particles entering a calorimeter on the opposite side of the beam line. The mean transverse momentum measured in the calorimeter is found to increase with the trigger-particle transverse momentum. The coplanarity of the events increases with trigger-particle transverse momentum. We have compared our data with the predictions of a phenomenological four-jet model. To fit our data we find that we must give large (0.9 GeV/ c ) mean transverse momenta to the constituents of the initial hadrons.
No description provided.
No description provided.
No description provided.
The authors have measured the polarization of 2.4×105 Λ0 hyperons in inclusive production by 12-GeV protons on tungsten at three production angles, 3.5°, 6.5°, and 9.5°. In terms of Feynman's xF and transverse momentum of Λ0, the kinematical range is 0.3<~xF<~0.8 and 0.4<~pT<~1.6 GeV/c. The observed polarization does not depend strongly on xF and increases linearly with pT to 16% at pT=1.0 GeV/c, showing a tendency to level off above that point.
No description provided.
No description provided.
No description provided.
We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back π 0 's of high transverse momentum ( p T ) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy √ s of the proton-proton collision. The cross-sections d σ d m at the values of √ s satisfy a scaling law of the form d σ d m = G(x) m n , where x = m(π 0 , π 0 )//trs and n = 6.5 ± 0.5 . We show from our data that the leading π 0 carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.
No description provided.
As part of a study of large p T phenomena in photon-proton collisions at the CERN ISR, a search for direct single photon production has been performed. A statistical division of the data sample into the fraction consistent with single photon and the fraction due to multiphoton decays of neutral hadrons is accomplished by measuring the average conversion probability for the sample in a one radiation length thick converter. The fraction of the sample attributable to direct single photon production is 〈 γ /all〉 = 0.074 ± 0.012 for 6 GeV/ c < p T 10 GeV/ c , and 〈 γ /all〉 = 0.26 ± 0.04 for p T > 10 GeV/ c , with an additional systematic uncertainty of ±0.05 for both values.
No description provided.
An apparatus consisting of a superconducting solenoid magnet, cylindrical drift-chambers, and two arrays of lead-glass Čerenkov counters has been used at the CERN ISR to study the production of e + e − pairs of invariant mass above 6.5 GeV/ c 2 . Cross sections for the continuum and the ϒ family of resonances are presented, as well as the mean transverse momentum 〈 p T 〉 of the electron-positron pairs in the continuum and resonance region.
No description provided.
Pseudorapidity distributions for proton-nucleus interactions are presented. The data cover twelve nuclei ranging from carbon to uranium and three incident proton momenta, 50, 100, and 200 GeV/c.
Three-dimensional avegage multiplicity distribution is parametrized to CONST(C=F)+CONST(C=G)*COL+CONST(C=H)*COL, where COL = A(N=NUCLEUS)*SIG(Q=P P)/SIG(Q=P NUCLEUS).
We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.
No description provided.