Showing 4 of 4 results
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Particle production in proton-induced reactions at 14.6 GeV/c on Be, Al, Cu, and Au targets has been systematically studied using the E-802 spectrometer at the BNL-Alternating Gradient Synchrotron. Particles are measured in the angular range from 5° to 58° and identified up to momenta of 5, 3.5, and 8 GeV/c for pions, kaons, and protons, respectively. Mechanisms for particle production are discussed in comparison with heavy-ion-induced reactions at the same incident energy per nucleon.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.