A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


A Determination of Quark Weak Couplings at {PETRA} Energies

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 101 (1981) 361, 1981.
Inspire Record 164812 DOI 10.17182/hepdata.31227

Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.

2 data tables

No description provided.

WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.


A Measurement of D meson production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 533-546, 1993.
Inspire Record 356732 DOI 10.17182/hepdata.14375

A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.

6 data tables

Using full data sample.

Using full data sample with proper time > 1 ps to enrich (b bbar) content.

Data with Delta(L) > 1.

More…

A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table

The second systematic error comes from the theoretical uncertainties.


A Measurement of charged particle multiplicity in Z0 --> c anti-c and Z0 --> b anti-b events

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 352 (1995) 176-186, 1995.
Inspire Record 393953 DOI 10.17182/hepdata.48168

We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.

2 data tables

Second systematic error is a common scale uncertainty.

Difference in the TOTAL charged particle multiplicity.


A Measurement of the b anti-b forward backward asymmetry using the semileptonic decay into muons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 276 (1992) 536-546, 1992.
Inspire Record 322498 DOI 10.17182/hepdata.29264

The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .

3 data tables

Experimentally measured asymmetry.

Asymmetry corrected for mixing using mixing parameter 0.143 +- 0.023.

SIN2TW measured in MSBAR scheme.


A Measurement of the photon structure function F2(gamma) at an average Q**2 of 12-GeV**2/c**4

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1996) 223-234, 1996.
Inspire Record 396884 DOI 10.17182/hepdata.47867

None

2 data tables

No description provided.

Low x domain.


A Measurement of the production of D*+- mesons on the Z0 resonance

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 27-44, 1995.
Inspire Record 382219 DOI 10.17182/hepdata.48317

We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be

5 data tables

No description provided.

Multiplicity data uncorrected for decay branching ratios.

No description provided.

More…

A Measurement of the tau leptonic branching fractions

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 357 (1995) 715-724, 1995.
Inspire Record 398321 DOI 10.17182/hepdata.48138

A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.

3 data tables

Axis error includes +- 0.23/0.23 contribution (Data statistics).

Axis error includes +- 0.19/0.19 contribution (Data statistics).

Combined from the two branching fractions above. E-MU universality assumed.


A Model independent measurement of quark and gluon jet properties and differences

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 179-202, 1995.
Inspire Record 396179 DOI 10.17182/hepdata.47862

None

3 data tables

THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).

CONST is the parameter used in jet's definition (see text).

CONST is the parameter used in jet's definition (see text).