The reactions π + p → Δ ++ π + π − and π + p → Δ ++ π + π − π o are used to study ϱ—ω interference at 5.45 GeV/ c . The fitted ϱ mass from a ϱ-ω interference fit is 788 MeV suggesting the possibility of a sum of different interference patterns. Hence the events are weighted by spin density matrix elements which tend to isolate particular exchanges. Results of a fit to these weighted events do not generally agree with the predictions of strong π—B and ϱ—A 2 exchange degeneracy.
No description provided.
Results are reported on the Δ ++ ϱ 0 and the Δ ++ ω 0 final states obtained from a 4 event/μb exposure of the Argonne National Laboratory 30 inch hydrogen bubble chamber to a π + beam at 5.45 GeV/ c . Data are presented on cross sections, differential cross sections, spin density matrix elements and differential cross-sections weighted by density matrix elements. Certain features of the data relevant to various Regge models are noted and the data is compared to a π -B exchange degenerate Regge model due to Abrams and Maor.
No description provided.
FROM RESONANCES PLUS BACKGROUND FITS, CORRECTED FOR RESONANCE TAILS AND UNSEEN OMEGA DECAYS.
No description provided.
None
No description provided.
The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .
THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.
The production of η and X° mesons has been investigated in four and six prong events from π + p interactions at 5.45 GeV/ c . The cross sections for the quasi two body states Δ ++ η and Δ ++ X° were found to be 0.076±0.013 mb and 0.017±0.006 mb respectively. A comparison of the matrix elements for these reactions yields an η−X° mixing angle different from that predicted by the quadratic mass formula by about 20°, but within 6° of the linear mass formula result.
No description provided.
We report on A + 2 production in a π + p experiment at 5.45 GeV/ c . The fitted values for the mass and width are given, and the production characteristics are illustrated by the momentum transfer distributions and average density matrix elements. A depletion of events is observed near 1.3 GeV which favours a double pole amplitude or two interfering resonances over a simple Breit-Wigner formula.
No description provided.
PLOT V. T IN FIG. 2(A) NOT COMPILED.
D.M.E'S DETERMINED BY ASSUMING RHO22=0,RHO00=1-2RHO11.
The production of the peripheral 3 π mass enhancement in the A 1 region is described. The differential cross section and its variation with 3 π mass is studied and the spin density matrix elements are given for the t -channel and s -channel helicity frames. As observed in π − p interactions t channel but not s channel helicity is conserved. A Deck type double Regge trajectory exchange amplitude gives good fits to the experimental distributions. Its use is supported by the equality of ϱ 0 0 for the A 1 and ϱ 00 for the ϱ in the t -channel, as noted by Donohue.
THE SPIN DENSITY MATRIX ELEMENTS FOR THE RHO (P=4) FROM A1 DECAY ARE IN THE RHO T-CHANNEL FRAME.
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
The magnitude of |f21(0)|, the coherent K0 regeneration amplitude in Cu, has been measured for K momenta from 600 to 1400 MeVc. Results are compared with predictions of an optical model using forward dispersion relation predictions for real parts of kaon-nucleon scattering amplitudes.
No description provided.
We have measured elastic pion-proton scattering in a 50 GeV/ c π − beam at the 76 GeV proton synchrotron in Serpukhov. Data are presented for four-momenta transfer squared in the range 0.03 < t < 0.4 (GeV/ c ) 2 .
SLOPE IS 9.1, +0.2, -0.4 GEV**-2 (INCLUDING SYSTEMATIC ERRORS).