We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
A study of π − p → K ∗ Λ and π − p → K ∗ Σ° at 3.9 GeV /c indicates that the main features of both reactions can be interpreted in terms of simple exchange processes, the first involving both natural and unnatural exchange, the second showing evidence for natural parity exchange only.
No description provided.
It is found in the reactions π ± p →( π ± π + π − )p, believed to be dominated by diffraction dissociation, that the d σ d t′ distributions show a “cross-over” effect at t ′ ≈ 0.15, similar to the effect observed in elastic scattering. This gives evidence for the interference of ( ϱ 0 , B 0 ,…)-exchanges with ( P , f 0 , …) -exchanges in pion diffraction dissociation reactions. No such evidence is found for baryon dissociation, π ± p → π ± (p π + π − ), at the same energy.
No description provided.
No description provided.
No description provided.
Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.
The differential cross section d σ d t′ for the charge-exchange process π + p → π 0 ( π + p) at 8, 16 and 23 GeV/ c is presented for several regions of the π + p effective mass. It is found that the dip at t ′ ≈ 0.6 (GeV/ c ) 2 which is observed in the Δ(1236) mass band becomes a less pronounced structure in the higher mass regions. However, while the slope of the d σ d t′ distributions in the near-forward direction decreases strongly with increasing π + p mass, there is no evidence that the observed structure moves to higher values of t ′ as the π + p mass increases. These results are consistent with a Regge-exchange picture where the position of the dip is determined by the exchanged trajectory, but are inconsistent with a simple geometrical picture.
TP DEPENDENCE FOR FOUR <PI+ P> MASS INTERVALS.
We have analysed the reaction π + p → pπ + π + π − at 16 GeV/c by means of the prism plot analysis (PPA) as proposed by Pless et al. We have separated ten reaction channels contributing to the final state pπ + π + π − and present the results in terms of partial and differential cross sections, invariant mass and decay angular distributions. We show that the PPA is a self-controlling method which is demonstrated by the emergence of a broad (3π) + enhancement around 1800 MeV decaying into ρ 0 π + .
PARTIAL CROSS SECTIONS FOR THE (P PI+ PI+ PI-) FINAL STATE.
By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.
No description provided.
FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.
Inclusive ϱ 0 and f(1270) production are analysed in π + p collisions at 8, 16 and 23 GeV/ c . The ϱ 0 cross section increases with energy such that the ϱ 0 /π − ratio remains constant. Emphasis is laid on cross sections as a function of the transverse momentum and of the Feynman x variable. The ϱ 0 's can be attributed to two sources: some ϱ 0 's are centrally produced, but there is a pronounced forward peak. The distribution of leptons coming from ϱ 0 decay is discussed.
No description provided.
No description provided.
No description provided.
The production of ρ 0 (770) and f(1270) is studied in π − p interactions at 16 GeV/ c . By comparison with inclusive K ∗0 production in the reaction K − p → K ∗0 + anything, and with inclusive ρ 0 production in the reaction pp → ρ 0 + anything, it is found that the data can be interpreted in terms of two production processes: the central production of resonances and the fragmentation of the beam particle. For the π − p reaction, the inclusive ρ 0 beam fragmentation cross section is 3.1 ± 0.3 mb while that for central production is 1.6 ± 0.5 mb. The ρ 0 central production cross section is consistent with increasing with energy as ln s behaviour. The ratio of ρ 0 to π − inclusive cross sections (excluding the leading π − ) is ∼0.2, independent of energy. The ρ 0 to π − ratio increases as a function of p T to a constant value of ∼ 1 2 above 1 GeV/ c . The ρ (charged and neutral) and f decays account for (25 ± 4)% and (1.4 ± 0.3)%, respectively, of all pions produced.
No description provided.
No description provided.
No description provided.
A prism plot analysis of the reaction π − p→p π + π − π − at 16 GeV/ c has been made and the results are compared with those obtained in a similar analysis of the reaction π + p→ p π + π + π − at the same energy. The three dominating reaction mechanisms (pion dissociation, reggeon exchange, proton diffraction dissociation) appear to be well separated, while considerable residual overlaps are present inside these classes. The prism plot method is discussed as a means for detecting hidden structures and some evidence is presented for a broad three-pion enhancement around 2 GeV decaying primarily into ϱ 0 π − .
No description provided.
A4(1900) IS CALLED A*(1800) BY AUTHORS. PI+ P CROSS SECTIONS PREVIOUSLY PUBLISHED IN M. DEUTSCHMANN ET AL., NP B99, 397 (1975).