We present upper limits on the production of heavy leptons (L±) by neutrinos via the process νμ+Ne→L±+⋯, L±→e±+ν+ν¯. These limits imply that the L− and L+, if they couple in full strength to νμ, are heavier than 7.5 and 9 GeV, respectively. They also imply that the coupling strength νμ to the recently discovered 1.9-GeV heavy lepton τ is less than 0.025 of the normal νμ−μ coupling.
No description provided.
Differential cross-sections are presented for the inclusive production of charged pions in the momentum range 0.1 to 1.2 GeV/c in interactions of 12.3 and 17.5 GeV/c protons with Be, Cu, and Au targets. The measurements were made by Experiment 910 at the Alternating Gradient Synchrotron in Brookhaven National Laboratory. The cross-sections are presented as a function of pion total momentum and production polar angle $\theta$ with respect to the beam.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
An analysis of inclusive pion production in proton-beryllium collisions at 6.4, 12.3, and 17.5 GeV/c proton beam momentum has been performed. The data were taken by Experiment 910 at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. The differential $\pi^+$ and $\pi^-$ production cross sections ($d^2\sigma/dpd\Omega$) are measured up to 400 mRad in $\theta_{\pi}$ and up to 6 GeV/c in $p_{\pi}$. The measured cross section is fit with a Sanford-Wang parameterization.
Pion production cross section for 6.4 GeV incident protons.
Pion production cross section for 6.4 GeV incident protons.
Pion production cross section for 6.4 GeV incident protons.
The inclusive production of K̄ ∗ (890) and K̄ ∗ (1420) is studied in K̄ − p interactions at 10 and 16 GeV/ c . At 10 GeV/ c an enhancement in the ( K ̄ 0 π − ) mass distribution is found at 1.74 GeV, but no clear signal is seen at 16 GeV/ c . The fraction of K 0 ' s coming from decay of the K ∗ (890) or K ∗ (1420) is large, being (50 ± 6)% and (45 ± 5)% at 10 and 16 GeV/ c , respectively. The inclusive cross sections for K ∗− (890) and K ∗0 (890) production are almost constant with energy from 8 to 32 GeV/ c with values of 3.5 and 3.3 mb, respectively. The K ∗ (890) production cross section is studied as a function of transverse and longitudinal variables and found to derive mainly from fragmentation of the incident K − meson. The spectra of K 0 ' s resulting from the decay of K ∗ (890) are studied.
No description provided.
No description provided.
No description provided.
In a broadband neutrino exposure of the Fermilab 15-ft bubble chamber, we observe the production of the Σc++(2426) charmed baryon followed by its decay to Λc+(2260) and π+. We find the mass of the Λc+ to be 2257±10 MeV and the m(Σc++)−m(Λc+) mass difference to be 168±3 MeV. Previously unseen two-body decay modes of the Λc+(2260) are observed.
No description provided.
The quasielastic reaction νμn→μ−p was studied in an experiment using the BNL 7-foot deuterium bubble chamber exposed to the wide-band neutrino beam with an average energy of 1.6 GeV. A total of 1138 quasielastic events in the momentum-transfer range Q2=0.06−3.00 (GeV/c)2 were selected by kinematic fitting and particle identification and were used to extract the axial-vector form factor FA(Q2) from the Q2 distribution. In the framework of the conventional V−A theory, we find that the dipole parametrization is favored over the monopole. The value of the axial-vector mass MA in the dipole parametrization is 1.07±0.06 GeV, which is in good agreement with both recent neutrino and electroproduction experiments. In addition, the standard assumptions of conserved vector current and no second-class currents are checked.
Measured Quasi-Elastic total cross section.
A prism plot analysis of the reaction π − p→p π + π − π − at 16 GeV/ c has been made and the results are compared with those obtained in a similar analysis of the reaction π + p→ p π + π + π − at the same energy. The three dominating reaction mechanisms (pion dissociation, reggeon exchange, proton diffraction dissociation) appear to be well separated, while considerable residual overlaps are present inside these classes. The prism plot method is discussed as a means for detecting hidden structures and some evidence is presented for a broad three-pion enhancement around 2 GeV decaying primarily into ϱ 0 π − .
None
We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.
A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.
No description provided.
No description provided.