The mass and momentum transfer spectra of the charged K K system produced in the reaction π ± p→K s 0 K ± p are analyzed. The data have been collected at the CERN SPS with the Geneva-Lausanne two-arm, non-magnetic spectrometer at 30 and 50 GeV/ c incident momenta. The general features of the reactions at these energies and the results of partial-wave analyses of the two kaon system are presented. The channel is dominated by the diffractive production of even spin resonances. The spin 4 recurrence of the A 2 (1320) is clearly observed at 2040 MeV ( Γ =380 MeV. A new resonance is observed with a mass M =2450MeV and a width Γ =400 MeV; the quantum numbers of this state are found to be I G ( J PC )=1 −(6 ++ ) . The analysis also shows the decay of the decay of the meson ϱ′(1600) through the K K channel at both energies. The production amplitudes are determined both as a function of the K K effective mass and of the momentum transfer. Isoscalar natural parity exchange is dominant. The energy dependence between 10 and 50 GeV/ c is shown to be well described by a Regge pole model based on the f-dominated pomeron hypothesis. We compare the production mechanisms of the 2 + resonances A 2 (1320) and K ∗ (1430). Finally, we estimate the K K branching ratios of the spin 4 A 2 (2040) and spin 6 A 2 (2450) resonances.
No description provided.
D(SIG)/DT FOR 50 GEV IN RESONANCE REGIONS.
No description provided.
A study of the reaction π + p → p π + π o at 16 GeV/ c incident momentum has been made using the prism plot analysis to reject background events arising from elastic and multineutral contaminations and to separate different reaction channels ( ϱ + p, g + p, Δ + π + , Δ ++ π o , π + (p π o ) DD ). Cross sections, invariant mass distributions and production and decay angular distributions are presented. For the channel corresponding to proton diffraction dissociation strong violation of both s - and t -channel helicity conservation is found for low values of the (p π o ) mass. We demonstrate that the prism plot method provides a better separation of background events than conventional methods using kinematic cuts.
STATISTICAL ERRORS ONLY.
No description provided.