<jats:title>Abstract</jats:title> <jats:p> The existence of three distinct neutrino flavours, <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> , <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> and <jats:italic>ν</jats:italic> <jats:sub>τ</jats:sub> , is a central tenet of the Standard Model of particle physics <jats:sup>1,2</jats:sup> . Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino, <jats:italic>ν</jats:italic> <jats:sub>s</jats:sub> (refs. <jats:sup>3–9</jats:sup> ). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND) <jats:sup>3</jats:sup> experiment and Mini-Booster Neutrino Experiment (MiniBooNE) <jats:sup>4,5</jats:sup> , consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber <jats:sup>10</jats:sup> in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly <jats:sup>6–8</jats:sup> . This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy between <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> appearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for either <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> flavour transitions or <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> disappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions cannot be explained by introducing a single sterile neutrino state. </jats:p>
14 observation channels used in this analysis. The first 7 channels correspond to the BNB, while the last 7 channels correspond to the NuMI beam. Each set of seven channels is split by reconstructed event type as well as containment in the detector, fully contained (FC) or partially contained (PC). The seven channels in order are $\nu_e$CC FC, $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
Four $\nu_e$CC observation channels, after constraints from 10 $\nu_\mu$CC and NC $\pi^0$ channels. The four channels in order are BNB $\nu_e$CC FC, BNB $\nu_e$CC PC, NuMI $\nu_e$CC FC, and NuMI $\nu_e$CC PC. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
14 channel covariance matrix showing uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties have not been included, but they can be calculated with the Combined Neyman-Pearson (CNP) method. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
In this letter, the first measurement of the femtoscopic correlation of protons and $Σ^+$ hyperons is presented and used to study the p$-Σ^+$ interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at $\sqrt{s} = 13$ TeV. The $Σ^+$ hyperons are reconstructed using a missing-mass approach in the decay channel to $\textrm{p} + π^0$ with $π^0\rightarrowγγ$, while both $Σ^+$ and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p$-Σ^+$ correlation function for the first time. Thanks to the high significance achieved in the p$-Σ^+$ correlation signal, it is possible to discriminate between the predictions of different models of the N$-Σ$ interaction and to accomplish a first determination of the p$-Σ^+$ scattering parameters.
Raw correlation function $C(k^{*})$ of $\textrm{p}-\Sigma^+$ and $\bar{\textrm{p}}-\bar{\Sigma}^-$ in high-multiplicity triggered pp collisions at $\sqrt{{s}}=13$ TeV. The data points are shifted to the center of gravity of the mixed-event distribution.
Corrected (genuine) correlation function $C(k^{*})$ of $\textrm{p}-\Sigma^+$ and $\bar{\textrm{p}}-\bar{\Sigma}^-$ in high-multiplicity triggered pp collisions at $\sqrt{{s}}=13$ TeV. The data points are corrected by the genuine $\lambda$ parameter, assuming that the non-genuine correlation function is unity (flat). No momentum unfolding is applied to the data points. The data points are shifted to the center of gravity of the mixed-event distribution.
Meson-baryon systems with strangeness content provide a unique laboratory for investigating the strong interaction and testing theoretical models of hadron structure and dynamics. In this work, the measured correlation functions for oppositely charged $Ξ-{\rm K}$ and $Ξ-π$ pairs obtained in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV at the LHC are presented. For the first time, high-precision data on the $Ξ-{\rm K}$ interaction are delivered at small relative momenta. The scattering lengths, extracted via the Lednický-Lyuboshits expression of the pair wavefunction, indicate a repulsive and a shallow attractive strong interaction for the $Ξ-{\rm K}$ and $Ξ-π$ systems, respectively. The $Ξ(1620)$ and $Ξ(1690)$ states are observed in the $Ξ-π$ correlation function and their properties, mass and width, are determined. These measurements are in agreement with other available results. Such high-precision data can help refine the understanding of these resonant states, provide stronger constraints for chirally motivated potentials, and address the key challenge of describing the coupled-channel dynamics that may give rise to molecular configurations.
The $\Xi$K correlation function.
The genuine $\Xi$K correlation function.
The $\Xi\pi$ correlation function.
The measurement of $\Sigma^{+}$ production in pp collisions at $\sqrt{s} = 13$ TeV is presented. The measurement is performed at midrapidity in both minimum-bias and high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV. The $\Sigma^{+}$ is reconstructed via its weak-decay topology in the decay channel $\Sigma^{+} \rightarrow {p} + \pi^{0}$ with $\pi^{0} \rightarrow \gamma + \gamma$. In a novel approach, the neutral pion is reconstructed by combining photons that convert in the detector material with photons measured in the calorimeters. The transverse-momentum ($p_{T}$) distributions of the $\Sigma^{+}$ and its rapidity densities d$N/$dy in both event classes are reported. The $p_{T}$ spectrum in minimum-bias collisions is compared to QCD-inspired event generators. The ratio of $\Sigma^{+}$ to previously measured $\Lambda$ baryons is in good agreement with calculations from the Statistical Hadronization Model. The high efficiency and purity of the novel reconstruction method for $\Sigma^{+}$ presented here will enable future studies of the interaction of $\Sigma^{+}$ with protons in the context of femtoscopic measurements, which could be crucial for understanding the equation of state of neutron stars.
$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the high-multiplicity triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.
$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the minimum-bias triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.
The first measurement at midrapidity ($|y| < 0.5$) of the production yield of the strange-charm baryons $Ξ_c^+$ and $Ξ_c^0$ as a function of transverse momentum ($p_{\rm T}$) in different charged-particle multiplicity classes in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ALICE experiment at the LHC is reported. The $Ξ_c^+$ baryon is reconstructed via the $Ξ_c^+ \rightarrow Ξ^-π^+π^+$ decay channel in the range $4 < p_{\rm T} < 12$ GeV/$c$, while the $Ξ_c^0$ baryon is reconstructed via both the $Ξ_c^0 \rightarrow Ξ^-π^+$ and $Ξ_c^0 \rightarrow Ξ^-e^+ν_e$ decay channels in the range $2 < p_{\rm T} < 12$ GeV/$c$. The baryon-to-meson ($Ξ_c^{0,+}/{\rm D}^0$) and the baryon-to-baryon ($Ξ_c^{0,+}/Λ_{\rm c}^+$) production yield ratios show no significant dependence on multiplicity. In addition, the observed yield ratios are not described by theoretical predictions that model charm-quark fragmentation based on measurements at $e^+e^-$ and $e^-$p colliders, indicating differences in the charm-baryon production mechanism in pp collisions. A comparison with different event generators and tunings, including different modelling of the hadronisation process, is also discussed. Moreover, the branching-fraction ratio of BR($Ξ_c^0 \rightarrow Ξ^-e^+ν_e$)/BR($Ξ_c^0 \rightarrow Ξ^-π^+$) is measured as 0.825 $\pm$ 0.094 (stat.) $\pm$ 0.081 (syst.). This value supersedes the previous ALICE measurement, improving the statistical precision by a factor of 1.6.
$p_{\rm T}$-differential per-event yield of prompt $\Xi_c^0$ baryons measured in the different multiplicity classes.
$p_{\rm T}$-differential per-event yield of prompt $\Xi_c^+$ baryons measured in the different multiplicity classes.
Ratio between the prompt $\Xi_c^0$ baryons in a multiplicity class to the multiplicity-integrated (INEL $>$ 0) class.
The dependence of f$_0$(980) production on the final-state charged-particle multiplicity is reported for proton-proton (pp) collisions at the centre-of-mass energy, $\sqrt{s}= 13$ TeV. The production of f$_0$(980) is measured with the ALICE detector via the f$_0(980) \rightarrow π^{+}π^{-}$ decay channel in a midrapidity region of $|y| < 0.5$. The evolution of the integrated yields and mean transverse momentum of f$_{0}$(980) as a function of charged-particle multiplicity measured in pp at $\sqrt{s} = 13$ TeV follows the trends observed in pp at $\sqrt{s} = 5.02$ TeV and in proton-lead (p-Pb) collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. Particle yield ratios of f$_{0}$(980) to $π^{\pm}$ and K$^{*}$(892)$^{0}$ are found to decrease with increasing charged-particle multiplicity. These particle ratios are compared with calculations from the canonical statistical thermal model as a function of charged-particle multiplicity. The thermal model calculations provide a better description of the decreasing trend of particle ratios when no strange or antistrange quark composition for f$_{0}$(980) is assumed, which suggests that the tetraquark interpretation of the f$_{0}$(980) is disfavored.
Transverse momentum spectra in different multiplicity classes. Each spectrum is corrected for the branching ratio of (46 $\pm$ 6)% based on [Phys. Rev. Lett. 111 no. 6, (2013) 062001].
The ratio of transverse momentum spectrum to the INEL > 0 spectrum
Transverse momentum integrated f0(980) yield in pp collisions
The transverse momentum spectra and integrated yields of $\overlineΣ^{\pm}$ have been measured in pp and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE experiment. Measurements are performed via the newly accessed decay channel $\overlineΣ^{\pm} \rightarrow {\rm\overline{n}}π^{\pm}$. A new method of antineutron reconstruction with the PHOS electromagnetic spectrometer is developed and applied to this analysis. The $p_{\rm T}$ spectra of $\overlineΣ^{\pm}$ are measured in the range $0.5 < p_{\rm T} < 3$ GeV/$c$ and compared to predictions of the PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4 models. The EPOS LHC and EPOS4 models provide the best descriptions of the measured spectra both in pp and p-Pb collisions, while models which do not account for multiparton interactions provide a considerably worse description at high $p_{\rm T}$. The total yields of $\overlineΣ^{\pm}$ in both pp and p-Pb collisions are compared to predictions of the Thermal-FIST model and dynamical models PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4. All models reproduce the total yields in both colliding systems within uncertainties. The nuclear modification factors $R_{\rm pPb}$ for both $\overlineΣ^{+}$ and $\overlineΣ^{-}$ are evaluated and compared to those of protons, $Λ$ and $Ξ$ hyperons, and predictions of EPOS LHC and EPOS4 models. No deviations of $R_{\rm pPb}$ for $\overlineΣ^{\pm}$ from the model predictions or measurements for other hadrons are found within uncertainties.
$p_\mathrm{{T}}$-differential production yield of $\overline{\Sigma}^{+}$ in INEL pp collisions at $\sqrt{s}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$.
$p_\mathrm{{T}}$-differential production yield of $\overline{\Sigma}^{-}$ in INEL pp collisions at $\sqrt{s}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$.
$p_\mathrm{{T}}$-differential production yield of $\overline{\Sigma}^{+}$ in NSD p-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y_\mathrm{CMS}|<0.5$.
We recently measured the branching fraction of the $B^{+}\rightarrow K^{+}ν\barν$ decay using 362fb$^{-1}$ of on-resonance $e^+e^-$ collision data under the assumption of Standard Model kinematics, providing the first evidence for this decay. To facilitate future reinterpretations and maximize the scientific impact of this measurement, we publicly release the full analysis likelihood along with all necessary material required for reinterpretation under arbitrary theoretical models sensitive to this measurement. In this work, we demonstrate how the measurement can be reinterpreted within the framework of the Weak Effective Theory. Using a kinematic reweighting technique in combination with the published likelihood, we derive marginal posterior distributions for the Wilson coefficients, construct credible intervals, and assess the goodness of fit to the Belle II data. For the Weak Effective Theory Wilson coefficients, the posterior mode of the magnitudes $|C_\mathrm{VL}+C_\mathrm{VR}|$, $|C_\mathrm{SL}+C_\mathrm{SR}|$, and $|C_\mathrm{TL}|$ corresponds to the point ${(11.3, 0.0, 8.2)}$. The respective 95% credible intervals are $[1.9, 16.2]$, $[0.0, 15.4]$, and $[0.0, 11.2]$.
The joint number density useful for reinterpretation in terms of new physics models (https://arxiv.org/abs/2402.08417). This is a 2d histogram of the ITA signal samples, combining both regions B (bins of $\eta(\rm{BDT}_2) \in [0.92, 0.94]$), binned in the kinematic variable $q^{2}_{\rm{gen}}$ and the fitting variables $q^{2}_{\rm{rec}} \times \eta(\rm{BDT}_2)$ (flattened).
The joint number density useful for reinterpretation in terms of new physics models (https://arxiv.org/abs/2402.08417). This is a 2d histogram of the HTA signal samples, binned in the kinematic variable $q^{2}_{\rm{gen}}$ and the fitting variable $\eta(\rm{BDTh})$.
We present a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B\to D\ellν_\ell$ using a $365~\mathrm{fb}^{-1}$$e^+e^-\toΥ(4S)\to B\bar B$ data sample recorded by the Belle II experiment at the SuperKEKB collider. The semileptonic decay of one $B$ meson is reconstructed in the modes $B^0\to D^-(\to K^+π^-π^-)\ell^+ν_\ell$ and $B^+\to \bar D^0(\to K^+π^-)\ell^+ν_\ell$, where $\ell$ denotes either an electron or a muon. Charge conjugation is implied. The second $B$ meson in the $Υ(4S)$ event is not reconstructed explicitly. Using an inclusive reconstruction of the unobserved neutrino momentum, we determine the recoil variable $w=v_B\cdot v_D$, where $v_B$ and $v_D$ are the 4-velocities of the $B$ and $D$ mesons. We measure the total decay branching fractions to be $\mathcal{B}(B^0\to D^-\ell^+ν_\ell)=(2.06 \pm 0.05\,(\mathrm{stat.}) \pm 0.10\,(\mathrm{sys.}))\%$ and $\mathcal{B}(B^+\to\bar D^0\ell^+ν_\ell)=(2.31 \pm 0.04\,(\mathrm{stat.}) \pm 0.09\,(\mathrm{sys.}))\%$. We probe lepton flavor universality by measuring $\mathcal{B}(B\to Deν_e)/\mathcal{B}(B\to Dμν_μ)=1.020 \pm 0.020\,(\mathrm{stat.})\pm 0.022\,(\mathrm{sys.})$. Fitting the partial decay branching fraction as a function of $w$ and using the average of lattice QCD calculations of the $B\to D$ form factor, we obtain $ |V_{cb}|=(39.2\pm 0.4\,(\mathrm{stat.}) \pm 0.6\,(\mathrm{sys.}) \pm 0.5\,(\mathrm{th.})) \times 10^{-3}$.
Differential decay rate $d\Gamma/dw$ for $B \to D \ell \nu$ averaged over 4 modes. The uncertainty listed represents the total uncertainty from statistical and systematic sources.
Differential decay rates $d\Gamma/dw$ for individual $B \to D \ell \nu$ modes. The uncertainty listed represents the total uncertainty from statistical and systematic sources.
Correlations (stat.+syst.) between the $d\Gamma_i/dw$ bins for the averaged $B \rightarrow D \ell \nu$ spectrum (10x10). Element indices 0-9 correspond to $w$ bins: 0: [1.00, 1.06], 1: [1.06, 1.12], 2: [1.12, 1.18], 3: [1.18, 1.24], 4: [1.24, 1.30], 5: [1.30, 1.36], 6: [1.36, 1.42], 7: [1.42, 1.48], 8: [1.48, 1.54], 9: [1.54, 1.59]
Ultrarelativistic heavy-ion collisions produce a state of hot and dense strongly interacting QCD matter called quark--gluon plasma (QGP). On an event-by-event basis, the volume of the QGP in ultracentral collisions is mostly constant, while its total entropy can vary significantly due to quantum fluctuations, leading to variations in the temperature of the system. Exploiting this unique feature of ultracentral collisions allows for the interpretation of the correlation of the mean transverse momentum of produced charged hadrons and the number of charged hadrons as a measure for the speed of sound. It is determined by fitting the relative increase in transverse momentum with respect to the relative change in the average charged-particle density measured at midrapidity. This study reports the event-average transverse momentum of charged particles as well as the self-normalized variance, skewness, and kurtosis of the event-by-event transverse momentum distribution in ultracentral Pb-Pb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair using the ALICE detector. Different centrality estimators based on charged-particle multiplicity or the transverse energy of the event are used to select ultracentral collisions. By ensuring a pseudorapidity gap between the region used to define the centrality and the region used to perform the measurement, the influence of biases on the rise of the mean transverse momentum is tested. The measured values are found to strongly depend on the exploited centrality estimator. The variance shows a steep decrease towards ultracentral collisions, while the skewness variables show a maximum, followed by a fast decrease. These non-Gaussian features are understood in terms of the vanishing of the impact-parameter fluctuations contributing to the event-to-event transverse momentum distribution.
Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimators based on $N_{\mathrm{ch}}$, ${N_{\mathrm{tracklets}}}$, and $E_{\mathrm{T}}$ within $|\eta|\leq 0.8$.
Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $-3.7<\eta<-1.7$ and $2.8 < \eta <5.1$.
Normalized $p_{\mathrm{T}}$-spectrum ratio as a function as a function of centrality in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $0.5 \leq |\eta|\leq 0.8$.