None
No description provided.
No description provided.
No description provided.
A systematic study has been made of the reactions pp→pp and pp→pN* in the angular range from θlab=10∘ to θc.m.=90∘ at 3, 4, 5, 6, and 7 GeVc. An orthogonal dispersion magnetic spectrometer detected protons from interactions in hydrogen with momentum transfer (−t) in excess of 0.5 (GeV)2. Well-defined peaks in the missing-mass spectra occurred at average N* masses of 1240±6, 1508±2, and 1683±3 MeV with average full widths of 102±4, 92±3, and 110±4 MeV, respectively. Below 2400 MeV no other significant enhancements were found. The N* production cross sections dσdt near θc.m.=90∘ are in qualitative agreement with the predictions of the statistical model. For each isobar the differential cross section at fixed energy varies as exp(−vv0), where v≡[−tu(t+u)]; v0 varies systematically with energy and tends toward the same value (≈0.4 GeV2) for each isobar at the upper limit of our energy range.
'1'. '2'. '3'.
We have studied the 2 π 0 final states in the reaction π + d → π 0 π 0 p(p) at 2.15 GeV/ c in a 2 million picture exposure of the PPA rapid cycling deuterium bubble chamber. Two tantalum plates were added to the bubble chamber to convert γ rays which were kinematically constrained to a 2 π 0 hypothesis. The 2 π 0 mass spectrum is observed to saturate s-wave unitarity in the ππ mass region between 0.6 and 0.9 GeV/ c 2 , clearly favoring the ‘up-down’ or broad resonance solution for s-wave, I = 0, ππ scattering.
No description provided.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.
We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.
No description provided.
No description provided.
None
No description provided.
|Tz|=32Δ(1238) systems are studied from the standpoint of direct production utilizing experimental data on the reactions pp→pπ+n, pp→pπ+π−p, pp→pπ+π−π0p, and pp→pπ+π−π+n. Resonance-production total and differential cross sections are presented, in addition to the decay density-matrix elements. It is demonstrated that the experimentally defined Δ(1238) systems are not characterized solely by spin-parity 32+, and that corresponding elements of the density matrices of both pπ+ and π−n cases generally behave in a similar manner with increasing c.m. angle. Additional detailed studies of the t-channel moments are presented for peripherally produced πN systems as a function of both c.m. angle and πN invariant mass. Dynamical differences are observed between the pπ+ and nπ− moments for the very peripheral data. One-pion-exchange-model predictions are compared with the peripheral pπ+ moments and with several invariant-mass distributions from the pp→pπ+π−p data. Complications arising from the presence of two pπ+ combinations in the four- and five-body final-state data are discussed.
No description provided.
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
Results are presented of a wire-spark-chamber spectrometer measurement of the differential cross section for π−p elastic scattering at 14.15 GeV/c. The region covered in the square of the four-momentum transfer, t, is 0.01<−t<0.78 (GeV/c)2. The cross section is found to obey very nearly a simple exponential t dependence with no evidence of structure. A fit to the data of the form dσdt∝exp(bt+ct2) on the range 0.05<−t<0.78 (GeV/c)2 (i.e., above the region affected by Coulomb scattering) yields b=8.26±0.10 (GeV/c)2 and c=1.01±0.17 (GeV/c)−4. Considering the results of previous measurements, b≃11 (GeV/c)−2 for −t<0.05 (GeV/c)2, a deviation from the simple exponential near −t≃0.05 (GeV/c)2 is indicated.
No description provided.
The differential cross section for π − p → π 0 n has been measured in the t range 1.8 ⩽ | t | ⩽ 8.2 (GeV/ c ) 2 by a counter-spark chamber experiment detecting the neutron and both π 0 decay photons. A broad minimum was found, centered at | t | = 5.2 (GeV/ c ) 2 .
No description provided.