The reactions gamma gamma -> pi^+pi^-pi^+pi^- and gamma gamma -> pi^+pi^0pi^-pi^0 are studied with the L3 detector at LEP in a data sample collected at centre-of-mass energies from 161GeV to 209GeV with a total integrated luminosity of 698/pb. A spin-parity-helicity analysis of the rho^0 rho^0 and rho^+ rho^- systems for two-photon centre-of-mass energies between 1GeV and 3GeV shows the dominance of the spin-parity state 2+ with helicity 2. The contribution of 0+ and 0- spin-parity states is also observed, whereas contributions of 2- states and of a state with spin-parity 2+ and zero helicity are found to be negligible.
Cross section for 4PI and (RHO0 RHO0) production.
Cross section for 4PI and (RHO+ RHO-) production.
Spin parity analysis fits for RHO0 RHO0.
Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.
Measured hadron cross section for the inclusive data sample.
Measured hadron cross section for the high-energy data sample.
Measured MU+ MU- cross section for the inclusive data sample.
Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2.
Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.
Production cross section for two-photon data as a function of Q**2.
Production cross section as a function of W.
Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV < sqrt{s} < 209GeV with a total integrated luminosity of 684.8/pb. The cross section of the process gamma gamma* -> rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 < q^2 < 0.85GeV^2 and 1.1GeV < Wgg < 3GeV.
Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.
Production cross section for two-photon data as a function of Q**2.
Production cross section as a function of W.
The cross section of W-boson pair-production is measured with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 629.4/pb, collected at centre-of-mass energies ranging from 189 to 209 GeV, 9834 four-fermion events with W bosons decaying into hadrons or leptons are selected. The total cross section is measured with a precision of 1.4 % and agrees with the Standard Model expectation. Assuming charged-lepton universality, the branching fraction for hadronic W-boson decays is measured to be: Br(W-->hadrons) = 67.50 +- 0.42 (stat.) +- 0.30(syst.) %, in agreement with the Standard Model. Differential cross sections as a function of the W- production angle are also measured for the semi-leptonic channels qqev and qqmv.
Measured cross section for the process E+ E- --> LEPTON NU LEPTON NU.
Measured cross section for the process E+ E- --> QUARK QUARKBAR ELECTRON NEUTRINO.
Measured cross section for the process E+ E- --> QUARK QUARKBAR MUON NEUTRINO.
In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.
The process e^+e^- --> Z gamma, where the Z boson decays into hadrons or neutrinos, is studied with data collected with the L3 detector at LEP at centre-of-mass energies from 189 GeV up to 209 GeV. The cross sections are measured and found to be in agreement with the Standard Model predictions. Limits on triple neutral-gauge-boson couplings, forbidden in the Standard Model at tree level, are derived. Limits on the energy scales at which the anomalous couplings could be manifest are set. They range from 0.3 TeV to 2.3 TeV depending on the new physics effect under consideration.
Cross sections as a function of c.m. energy.
Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.
Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.
Cross sections for the two photon production of RHO+ RHO-.
Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.
The QED processes e^+ e^- -> e^+ e^- \mu^+ \mu^- and e^+ e^- -> e^+ e^- \tau^+ \tau^- are studied with the L3 detector at LEP using an untagged data sample collected at centre-of-mass energies 161 GeV < sqrt{s} < 209 GeV. The tau-pairs are observed through the associated decay of one tau into e\nu\nu and the other into \pi\pi\nu . The cross sections are measured as a function of sqrt{s}. For muon pairs, the cross section of the \gamma\gamma -> \mu^+\mu^- process is also measured as a function of the two-photon centre-of-mass energy for 3 GeV < W_{\gamma\gamma} < 40 GeV. Good agreement is found between these measurements and the O(\alpha^4) QED expectations. In addition, limits on the anomalous magnetic and electric dipole moments of the tau lepton are extracted.
Cross sections for muon-pair production as a function of centre of mass energy.
Cross sections for tau-pair production as a function of centre of mass energy.
Cross sections for the process GAMMA GAMMA --> MU+ MU- as a function of W.
Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV.
Production cross sections as a function of Q**2. The differential cross sections are corrected to the centre of each bin.
Production cross section for the two photon data as a function of Q**2.
Differential cross section for non-resonance and RHO0 RHO0 data corrected to the centre of each bin.