The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-$k_t$ algorithm with radius parameter $R=0.4$ and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.
Measured cross sections for isolated-photon plus jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus jet production as a function of $p_{\rm T}^{\rm jet-lead}$.
Measured cross sections for isolated-photon plus jet production as a function of $\Delta\phi^{\rm \gamma-jet\ lead}$.
The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.
Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.
The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb-1. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon--jet invariant mass and the scattering angle in the photon--jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.
The measured bin-averaged cross-section $d\sigma/dE_{\rm T}^\gamma$ for isolated-photon plus jet production. The corrections for hadronisation and underlying-event effects to be applied to the parton-level NLO QCD calculations ($C_{NLO}$) are shown in the last column.
The measured bin-averaged cross-section $d\sigma/dp_{\rm T}^{jet}$ for isolated-photon plus jet production. Other details as in the caption to Table 1.
The measured bin-averaged cross-section $d\sigma/d|y^{\rm jet}|$ for isolated-photon plus jet production. Other details as in the caption to Table 1.
A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy $\sqrt{s}$ = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^{\gamma}| \lt 1.37$ and with a transverse energy $E_T^\gamma$ > 25 GeV. Jets are reconstructed in the rapidity range $|y^{jet}|$ < 4.4 and with a transverse momentum $p_T^{jet}$ > 20 GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-$p_T$ jet: $|y^{jet}| < 1.2, 1.2 \le |y^{jet}|$ < 2.8 and 2.8 $\le |y^{jet}|$ < 4.4. For each rapidity configuration the same-sign $(\eta^{\gamma}y^{jet}\ge 0)$ and opposite-sign $(\eta^{\gamma}y^{jet}<0)$ cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^{\gamma} \lt 45$ GeV, where the theoretical predictions overestimate the measured cross sections.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, |y(jet)|<1.2, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 1.2<=|y(jet)|<2.8, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 2.8<=|y(jet)|<4.4, eta(gamma)*y(jet)>=0.