A study of the reaction π + p → p π + π o at 16 GeV/ c incident momentum has been made using the prism plot analysis to reject background events arising from elastic and multineutral contaminations and to separate different reaction channels ( ϱ + p, g + p, Δ + π + , Δ ++ π o , π + (p π o ) DD ). Cross sections, invariant mass distributions and production and decay angular distributions are presented. For the channel corresponding to proton diffraction dissociation strong violation of both s - and t -channel helicity conservation is found for low values of the (p π o ) mass. We demonstrate that the prism plot method provides a better separation of background events than conventional methods using kinematic cuts.
STATISTICAL ERRORS ONLY.
No description provided.
Differential cross sections for elastic scattering of negative kaons on protons are presented for 13 incident laboratory momenta between 1094 MeV/c and 1377 MeV/c. The data show the characteristic forward diffraction-like peak and backward dip and are adequately described in shape by certain published partial-wave analyses of the N system.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic scattering of negative pions on protons are presented for 16 momenta between 996 MeV/ c and 1342 MeV/ c . The cross sections are compared with the predictions from published phase-shift analyses.
No description provided.
A partial-wave analysis of the (K ππ ) 0 system produced in the charge exchange reaction K − p →( K 0 π + π − ) n has been made in the mass range 1.04 ⩽ M (K ππ ) < 1.56 GeV c data at 8, 10 and 16 GeV/ c . It was found that in about 2 3 of the cases, the (K ππ ) 0 system is produced in states of unnatural spin-parity, namely J P = 0 − and 1 + ; the rest is in the natural spin-parity state J P = 2 + state is consistent with being all K ∗ (1420). The unnatural spin-parity states are produced mostly (∼ 80% of the events) by natural parity exchange. The facts that unnatural spin-parity states are produced in this non-diffractive channel, with J P = 1 + dominant, and that the exchange responsible for their production is mostly of natural parity, are similar to what was found for the charged (K ππ ) − system in the diffractive reaction K − p→(K ππ ) − p. However, the absolute value and the energy dependence of the cross sections are very different in the two cases.
CORRECTED FOR UNSEEN AK0 DECAY MODES.
ACTUALLY CROSS SECTIONS FOR PRODUCTION IN MASS REGION 1.04 < M(AK0 PI+ PI-) < 1.56 GEV IN THE STATES JP = 1+, 2+ AND 0- RESPECTIVELY.
The K − p reactions with final states Λπ 0 , Σ 0 π 0 , Λπ 0 π 0 , Λη and Σ 0 η have been studied at 14 momenta between 685 and 934 MeV/ c using optical spark chambers. The charged decay products of the Λ are detected by low mass spark chambers while γ-rays from π 0 and Σ 0 decays are detected in high mass chambers. Approximately 250 000 photographs were analysed from which partial and differential cross sections were determined. These results are presented with an energy dependent, single channel partial-wave analysis.
No description provided.
No description provided.
No description provided.
We present differential cross sections for elastic p d scattering at beam momenta 0.735 and 0.940 GeV/ c and momentum transfers in the range 0.04<| t |<0.5(GeV/ c ) 2 . The p d elastic differential cross section is expressed in terms of a deutron form factor and the I =0 t -channel exchange N N amplitudes, enabling us to isolate the corresponding I =0 t -channel exchange cross sections.
DIFFERENTIAL CROSS SECTION SLOPE, ALLOWING FOR DEUTERON FORM-FACTOR.
No description provided.
Measurements of complete angular distributions of elastic K + p scattering at closely spaced incident momenta from 1368 to 2259 MeV/ c are presented and discussed. A PDP-8 computer controlled system of scintillation counters and core-readout wire spark chambers was used for the detection of elastic events. Diffractive behaviour is already present at the lowest measured momentum and becomes more prominent as the incident momentum increases. An expansion of the angular distributions in terms of Legendre polynomials shows no marked structure of the expansion coefficients as functions of the incident momentum. Our measurements can be adequately described by a number of existing phase shift solutions within 5% of their published values. Also Regge pole extrapolations represent our data satisfactorily.
No description provided.
No description provided.
No description provided.
The p p and p n elastic differential cross sections have been extracted from the reaction p d→ p pn in which the deuteron breaks up. The incident antiproton momenta were 0.480, 0.735 and 0.940 GeV/ c , and the range of the momentum transfers was 0.04 < ∣ t ∣ < 0.7 (GeV/ c ) 2 . Both p p and p n differential cross sections are diffraction-like, with structure similar to the higher-momentum data.
No description provided.
No description provided.
No description provided.
Elastic electron proton scattering has been used to check the validity of the dipole fit of the proton form factors at momentum transfer between 0.05 and 0.30 (GeV/ c ) 2 . The general behaviour of the cross sections is in agreement with previous measurements and is close to the dipole predictions but there is the suggestion of some small amplitude deviations. It is speculated that these deviations may be related to similar effects in the proton formfactor derived from the ISR pp elastic scattering data via a Chou-Yang model.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
Results of fit of the combined data samples of Table 1 and Table 2. Data points was fitted by formula A + B*q**2 + C*sin(OMEGA*q**2 + PHI).
We measured the polarization parameter P in neutron-proton elastic scattering near the backward direction, using a polarized proton target. Measurements covered the range of incident neutron momenta from 1.0 to 5.5 GeV/ c and of four-momentum transfer squared u from −0.005 to −0.5 (GeV/ c ) 2 .
'1'. '2'. '3'. '4'.
No description provided.
No description provided.