X0 ---> 2gamma from pi- p ---> neutral meson + neutron at 3.8 gev/c

Apel, W.D. ; Auslaender, J. ; Mueller, H. ; et al.
Phys.Lett.B 40 (1972) 680-684, 1972.
Inspire Record 75664 DOI 10.17182/hepdata.28261

We report on a measurement for the branching-ratio X 0 → 2γ X 0 ar all. Our result is X 0 → 2γ X 0 → all = (2.9 ± 0.9)% .

1 data table

BY COMPARISON WITH THE KNOWN ETA PRODUCTION CROSS SECTION.


Muon pair production by electron-positron collisions in the gev region

Borgia, B. ; Ceradini, F. ; Conversi, M. ; et al.
Lett.Nuovo Cim. 3S2 (1972) 115-120, 1972.
Inspire Record 77432 DOI 10.17182/hepdata.37904

None

1 data table

CONST(NAME=EXP/THEORY) is the experimental numbers divided by the theoretical predictions.


Further evidence for the decay mode x(0) ---> gamma gamma and determination of the branching ratio x(0) ---> gamma gamma/ x(0) ---> total

Basile, M. ; Bollini, D. ; Dalpiaz, P. ; et al.
Nucl.Phys.B 33 (1971) 29-41, 1971.
Inspire Record 68511 DOI 10.17182/hepdata.33085

41 ± 8 events of the type X 0 → γγ have been observed in a study of the reaction π − p → n(X 0 → γγ ) at 1.6 GeV/ c incident π -momentum. This provides further evidence to our previous observation of this new X 0 decay mode and allows the determination of the branching ratio Γ(X 0 →γγ) Γ(X 0 → total =(1.7 ± 0.4)%. The theoretical implications of this result are discussed.

1 data table

THIS MEASUREMENT WHEN COMBINED WITH THE ETAPRIME PRODUCTION CROSS SECTION OF M. BASILE ET AL., NC 3A, 371 (1971) YIELDS A BR(ETAPRIME --> 2GAMMA) OF 1.7 +- 0.4 PCT.


Measurement of the x0 cross-sections in pi- p interactions at 1.6 gev/c (x0 ---> neutrals)/(x0 ---> total)

Basile, M. ; Bollini, D. ; Dalpiaz, P. ; et al.
Nuovo Cim.A 3 (1971) 371-384, 1971.
Inspire Record 71622 DOI 10.17182/hepdata.37600

The reactions π−p→ n+(X0→total) and π−p→ n+(X0→neutrals) have been studied at 1.6 GeV/c with the Bologna-CERN neutron missing-mass spectrometer. Both reactions have been detected without the use of visual techniques. The results are: σ(X0→total)=(108±14) μb and σ(X0→neutrals)=(20.0±3.5) μb, giving a branching ratio Γ(X0→neutrals)/Γ(X0→total)=(18.5±2.2)%. The branching ratio for other possible, so far undetected, neutral decay modes of the X0 turns out to be (2.4±1.9)%.

1 data table

No description provided.


Electromagnetic form-factors of the proton between 5 and 50 1/fm-squared

Berger, Christoph ; Gersing, E. ; Knop, G. ; et al.
Phys.Lett.B 28 (1968) 276-278, 1968.
Inspire Record 56842 DOI 10.17182/hepdata.29174

The external beam of the 2.5 GeV-electron-synchrotron has been used to measre elastic electron proton scattering at four-momentum-transfers between 15 and 50 fm −2 . By combining these results with measurements at small angles at DESY, we have obtained the electric and magnetic form factors separately. Their ratio shows a deviation from the scaling law.

2 data tables

No description provided.

No description provided.


Positron-Proton Scattering

Browman, A. ; Liu, F. ; Schaerf, C. ;
Phys.Rev. 139 (1965) B1079-B1085, 1965.
Inspire Record 944961 DOI 10.17182/hepdata.26686

The importance of two-photon exchange in elastic electron-proton scattering was investigated by measuring the ratio of positron-proton to electron-proton scattering. Four-momentum transfers as large as 0.756 (BeV/c)2 (19.5 F−2) were used. The data indicate that two-photon effects are (4.0±1.5)% larger than those predicted by the radiative corrections at the highest momentum transfers attained in these experiments. The two-photon corrections predicted using a static charge distribution fit the data well at lower momentum transfers and forward angles, but appear to be small at higher momentum transfers and backward angles.

10 data tables

Data recalculated from the data of Yount and Pine.

Data recalculated from the data of Yount and Pine. RUN_1 and RUN_2 of the Yount and Pine experiment were separated by large time interval.

Data recalculated from the data of Yount and Pine.

More…

Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…