Showing 10 of 33 results
We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p
$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.
We report the results from measurements of proton polarization P , in the γ +D→p+n reaction at photon energies ranging from 200 to 350 MeV. The data obtained are compared with the measured analysing power A , of the reverse reaction and with model calculations. The assumption of the dominant contribution of isobar configurations in this region is on the whole confirmed by the present proton polarization measurements.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
None
No description provided.
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.
PI0 ASYM(LL) measurements from 2005.
PI0 ASYM(LL) measurements from 2006.
PI0 ASYM(LL) measurements from 2009.
ETA ASYM(LL) measurements from 2005.
ETA ASYM(LL) measurements from 2006.
ETA ASYM(LL) measurements from 2009.
Combined PI0 ASYM(LL) values from the PHENIX data sets at sqrt(s) = 200 GeV.
Combined ETA ASYM(LL) values from the PHENIX data sets at sqrt(s) = 200 GeV.
The best fit value of the gluon polarization where the uncertainty is that at a chi-squared value of 9 when considering only statistical experimental uncertainties.
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.72 to 1.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.73 to 1.74 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.74 to 1.75 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.75 to 1.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.76 to 1.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.77 to 1.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.78 to 1.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.79 to 1.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.8 to 1.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.81 to 1.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.82 to 1.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.83 to 1.84 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.84 to 1.85 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.85 to 1.86 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.86 to 1.87 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.87 to 1.88 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.88 to 1.89 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.89 to 1.9 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.9 to 1.91 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.91 to 1.92 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.92 to 1.93 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.93 to 1.94 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.94 to 1.95 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.96 to 1.97 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.97 to 1.98 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.98 to 1.99 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.99 to 2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2 to 2.01 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.01 to 2.02 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.02 to 2.03 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.03 to 2.04 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.04 to 2.05 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.05 to 2.06 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.06 to 2.07 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.07 to 2.08 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.08 to 2.09 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.09 to 2.1 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.1 to 2.11 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.11 to 2.12 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.12 to 2.13 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.13 to 2.14 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.14 to 2.15 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.15 to 2.16 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.16 to 2.17 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.17 to 2.18 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.18 to 2.19 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.19 to 2.2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.2 to 2.21 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.21 to 2.22 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.22 to 2.23 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.23 to 2.24 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.24 to 2.25 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.25 to 2.26 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.26 to 2.27 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.27 to 2.28 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.28 to 2.29 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.29 to 2.3 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.3 to 2.31 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.31 to 2.32 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.32 to 2.33 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.33 to 2.34 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.34 to 2.35 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.35 to 2.36 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.36 to 2.37 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.37 to 2.38 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.38 to 2.39 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.39 to 2.4 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.4 to 2.41 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.41 to 2.42 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.42 to 2.43 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.43 to 2.44 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.44 to 2.45 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.45 to 2.46 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.46 to 2.47 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.47 to 2.48 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.48 to 2.49 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.49 to 2.5 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.5 to 2.51 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.51 to 2.52 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.52 to 2.53 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.53 to 2.54 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.54 to 2.55 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.55 to 2.56 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.56 to 2.57 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.57 to 2.58 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.58 to 2.59 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.59 to 2.6 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.6 to 2.61 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.61 to 2.62 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.62 to 2.63 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.63 to 2.64 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.64 to 2.65 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.65 to 2.66 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.66 to 2.67 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.67 to 2.68 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.68 to 2.69 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.69 to 2.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.7 to 2.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.71 to 2.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.72 to 2.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.75 to 2.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.76 to 2.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.77 to 2.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.78 to 2.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.79 to 2.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.8 to 2.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.81 to 2.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.82 to 2.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.83 to 2.84 GeV.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.95 to -0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
The Collins and Sivers asymmetries for charged hadrons produced in deeply inelastic scattering on transversely polarised protons have been extracted from the data collected in 2007 with the CERN SPS muon beam tuned at 160 GeV/c. At large values of the Bjorken x variable non-zero Collins asymmetries are observed both for positive and negative hadrons while the Sivers asymmetry for positive hadrons is slightly positive over almost all the measured x range. These results nicely support the present theoretical interpretation of these asymmetries, in terms of leading-twist quark distribution and fragmentation functions.
The COLLINS asymmetry for positively charged hadrons as a function of X.
The COLLINS asymmetry for positively charged hadrons as a function of Z.
The COLLINS asymmetry for positively charged hadrons as a function of PT.
The COLLINS asymmetry for negatively charged hadrons as a function of X.
The COLLINS asymmetry for negatively charged hadrons as a function of Z.
The COLLINS asymmetry for negatively charged hadrons as a function of PT.
The SIVERS asymmetry for positively charged hadrons as a function of X.
The SIVERS asymmetry for positively charged hadrons as a function of Z.
The SIVERS asymmetry for positively charged hadrons as a function of PT.
The SIVERS asymmetry for negatively charged hadrons as a function of X.
The SIVERS asymmetry for negatively charged hadrons as a function of Z.
The SIVERS asymmetry for negatively charged hadrons as a function of PT.
The COLLINS asymmetry for positively charged hadrons as a function of Z for X > 0.05.
The COLLINS asymmetry for positively charged hadrons as a function of PT for X > 0.05.
The COLLINS asymmetry for negatively charged hadrons as a function of Z for X > 0.05.
The COLLINS asymmetry for negatively charged hadrons as a function of PT for X > 0.05.
The SIVERS asymmetry for positively charged hadrons as a function of Z for X > 0.032.
The SIVERS asymmetry for positively charged hadrons as a function of PT for X > 0.032.
The SIVERS asymmetry for negatively charged hadrons as a function of Z for X > 0.032.
The SIVERS asymmetry for negatively charged hadrons as a function of PT for X > 0.032.
The COLLINS asymmetry for positively charged hadrons as a function of W for X > 0.032.
The COLLINS asymmetry for negatively charged hadrons as a function of W for X > 0.032.
The SIVERS asymmetry for positively charged hadrons as a function of W for X > 0.032.
The SIVERS asymmetry for negatively charged hadrons as a function of W for X > 0.032.
The COLLINS asymmetry for positively charged hadrons as a function of W for X < 0.032.
The COLLINS asymmetry for negatively charged hadrons as a function of W for X < 0.032.
The SIVERS asymmetry for positively charged hadrons as a function of W for X < 0.032.
The SIVERS asymmetry for negatively charged hadrons as a function of W for X < 0.032.
The COLLINS asymmetry for positively charged hadrons as a function of X for W > 7.5 GeV.
The COLLINS asymmetry for negatively charged hadrons as a function of X for W > 7.5 GeV.
The SIVERS asymmetry for positively charged hadrons as a function of X for W > 7.5 GeV.
The SIVERS asymmetry for negatively charged hadrons as a function of X for W > 7.5 GeV.
The COLLINS asymmetry for positively charged hadrons as a function of X for W < 7.5 GeV.
The COLLINS asymmetry for negatively charged hadrons as a function of X for W < 7.5 GeV.
The SIVERS asymmetry for positively charged hadrons as a function of X for W < 7.5 GeV.
The SIVERS asymmetry for negatively charged hadrons as a function of X for W < 7.5 GeV.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.95-1.96 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.73-2.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.74-2.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
We have measured the polarizations of J/ψ and ψ(2S) mesons as functions of their transverse momentum pT when they are produced promptly in the rapidity range |y|<0.6 with pT≥5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb−1 collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as pT increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/ψ and ψ(2S) mesons from B-hadron decays are also reported.
Polarization parameter ALPHA for J/PSI production.
Polarization parameter ALPHA for PSI(2S) production.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, and.
We show that Σ+ hyperons produced by 800 GeV/c protons on targets of Be and Cu have significant polarizations (15–20%). These polarizations persist at values of pt≈2 GeV/c and a wide range of xF. The polarizations from the Cu target are consistently less than from Be. The average ratio of the Σ+ polarization from Cu to that from Be is 0.68±0.08.
Measured values of the SIGMA+ polarization as functions of PT and XL for proton CU collisions.
Measured values of the SIGMA+ polarization as functions of PT and XL for proton BE collisions.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.