Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Cascade production in the reactions gamma p --> K+ K+ (X) and gamma p --> K^+ K^+ pi- (X)

Guo, L. ; Weygand, D.P. ; Battaglieri, M. ; et al.
Phys.Rev.C 76 (2007) 025208, 2007.
Inspire Record 744487 DOI 10.17182/hepdata.31494

Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.

47 data tables

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.

More…

Production of V0 pairs in the hyperon experiment WA89

The WA89 collaboration Adamovich, M.I. ; Alexandrov, Yu.A. ; Baranov, S.P. ; et al.
Eur.Phys.J.C 52 (2007) 857-874, 2007.
Inspire Record 772833 DOI 10.17182/hepdata.11375

We present a comprehensive study of the inclusive production of V 0 V 0 pairs (V 0 =Lambda, Lambda-bar or K S ) by Sigma - and pi - of 340 GeV/ c momentum and neutrons of 260 GeV/ c mean momentum in copper and carbon targets. In particular, the de pendence of the x F spectra on the combination of beam-particle and produced V 0 V 0 pair is investigated and compared to predictions obtained from PYTHIA and QSGM calculations. The data and these predictions differ in many details, the agreement can at b est be termed as qualitative. A signal from decays of the tensor meson f? 2 (1525) was observed in the K S K S mass distribution and inclusive production cross sections were measured. No signal was found from the double-strange H-dibaryon decaying to Lamb daLambda.

98 data tables

V0 V0 cross section for N on CU target.

V0 V0 cross section for N on C target.

V0 V0 cross section for PI- on CU target.

More…

Cross Sections for the $\gamma p \to K^{*0}\Sigma^+$ Reaction at $E_\gamma = 1.7 - 3.0$ GeV

The CLAS collaboration Hleiqawi, I. ; Hicks, K. ; Carman, D.S. ; et al.
Phys.Rev.C 75 (2007) 042201, 2007.
Inspire Record 742894 DOI 10.17182/hepdata.52647

Differential cross sections for the reaction $\gamma p \to K^{*0} \Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The \kstar was detected by its decay products, $K^+\pi^-$, in the CLAS detector at Jefferson Lab. These data are the first \kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the model's two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $\kappa$ meson exchange in $t$-channel diagrams should be investigated.

2 data tables

Cross sections with total uncertainties.

Cross sections with total uncertainties.


Exclusive photoproduction of the Cascade (Xi) hyperons.

The CLAS collaboration Price, J.W. ; Nefkens, B.M.K. ; Ducote, J.L. ; et al.
Phys.Rev.C 71 (2005) 058201, 2005.
Inspire Record 660705 DOI 10.17182/hepdata.25222

We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.

1 data table

Cross section averaged over the energy range 3.2 to 3.9 GeV.


A measurement of $\Lambda$ polarization in inclusive production by $\Sigma^-$ of 340-GeV/c in C and Cu targets

The WA89 collaboration Adamovich, M.I. ; Alexandrov, Yu.A. ; Baranov, S.P. ; et al.
Eur.Phys.J.C 32 (2004) 221-228, 2004.
Inspire Record 645459 DOI 10.17182/hepdata.43190

We have measured the polarization of $\Lambda$ hyperons produced inclusively by a $\Sigma^-$ beam of 340 GeV/c momentum in nuclear targets. From a sample of 9.5 millions of identified $\Lambda$ decays, polarizations were determined in the range $x_F \gt 0.1$ and $p_t\leq 1.6$ GeV/c . The polarization w.r.t. the production normal is mainly positive for $x_F \geq 0.3$. At fixed values of $x_F$, it increases with $p_t$ to a maximum between $p_t = 0.5$ and $p_t = 1$ GeV/c , and then decreases to zero or even negative values, in sharp contrast to the plateau above $p_t = 1$ GeV/c observed in inclusive $\Lambda$ production by protons.

8 data tables

Measured values of the LAMBDA polarization as a function of PT in the XL range 0.1 to 0.2.

Measured values of the LAMBDA polarization as a function of PT in the XL range 0.2 to 0.3.

Measured values of the LAMBDA polarization as a function of PT in the XL range 0.3 to 0.4.

More…

Spectra and correlations of Lambda and Lambda produced in 340-GeV/c Sigma -+C and 260-GeV/c n+C interactions

Adamovich, M.I. ; Alexandrov, Yu.A. ; Baranov, S.P. ; et al.
Phys.Rev.C 65 (2002) 042202, 2002.
Inspire Record 585235 DOI 10.17182/hepdata.25354

We have measured the production of strange baryons and antibaryons in 340-GeV/c Σ−+C and 260-GeV/c n+C interactions. The single xF distributions show the expected leading particle effect, and the single pt2 distributions show a distinct nonthermal behavior. The xF distributions of Λ-Λ pairs indicate two different phase space distributions for the two coincident baryons. On the other hand two Λ¯’s show identical distributions. Momentum conservation during the formation process may represent a significant source for the observed behavior.

4 data tables

Total inclusive LAMBDA and LAMBDABAR production cross sections for the SIGMA- beam on the Carbon target.

Total inclusive LAMBDA and LAMBDABAR production cross sections for the Neutron beam on the Carbon target.

Total inclusive LAMBDA LAMBDA and LAMBDABAR LAMBDABAR pair production crosssections for the SIGMA- beam on the Carbon target.

More…

A measurement of K*+- production in the hyperon beam experiment at CERN

The WA89 collaboration Adamovich, M.I. ; Aleksandrov, Yu.A. ; Baranov, S.P. ; et al.
Eur.Phys.J.C 22 (2001) 47-54, 2001.
Inspire Record 569120 DOI 10.17182/hepdata.43223

We report on a measurement of the differential cross sections of inclusive$K^{\pm}_{890}$production in$\sigma^-, pi^-$and ne

8 data tables

The production cross sections for K*+- per nucleus and per nucleon for the SIGMA- beam.

The production cross sections for K*+- per nucleus and per nucleon for the PI- beam.

The production cross sections for K*+- per nucleus and per nucleon for the NEUTRON- beam.

More…

An Excitation function of K- and K+ production in Au + Au reactions at the AGS

The E866 & E917 collaborations Ahle, L ; Akiba, Y ; Ashktorab, K ; et al.
Phys.Lett.B 490 (2000) 53-60, 2000.
Inspire Record 531905 DOI 10.17182/hepdata.31473

Mid-rapidity spectra and yields of K$^-$ and K$^+$ have been measured for Au+Au collisions at 4, 6, 8, and 10.7 AGeV. The K$^-$ yield increases faster with beam energy than for K$^+$ and hence the K$^-$/K$^+$ ratio increases with beam energy. This ratio is studied as a function of both $\sqrt{s}$ and $\sqrt{s}$-$\sqrt{s_{th}}$ which allows the direct comparison of the kaon yields with respect to the production threshold in p+p reactions. For equal $\sqrt{s}$ - $\sqrt{s_{th}}$ the measured ratio K$^-$/K$^+$=0.2 at energies above threshold in contrast to the K$^-$/K$^+$ ratio of near unity observed at energies below threshold. The use of the K$^-$/K$^+$ ratio to test the predicted changes of kaon properties in dense nuclear matter is discussed.

3 data tables

Only statistical errors are presented.

Only statistical errors are presented.

Only statistical errors are presented.


Excitation function of K+ and pi+ production in Au + Au reactions at 2-A-GeV to 10-A-GeV.

The E866 & E917 collaborations Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Lett.B 476 (2000) 1-8, 2000.
Inspire Record 508374 DOI 10.17182/hepdata.28038

Positive pion and kaon production from Au+Au reactions have been measured as a function of beam energy over the range 2.0-10.7~AGeV. Both the kaon and the pion production cross-sections at mid-rapidity are observed to increase steadily with beam kinetic energy. The ratio of K$^+$ to $\pi^+$ mid-rapidity yields increases from 0.0271$\pm0.0015\pm0.0014$ at 2.0~AGeV to 0.202$\pm0.005\pm0.010$ at 10.7~AGeV and is larger than the K$^+$/$\pi^+$ ratio from p+p reactions over the same beam energy region. There is no indication of an onset of any new production mechanism in heavy-ion reactions in this energy range beyond rescattering of hadrons.

4 data tables

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). The spectra were fit with a scaled exponential, D2(N)/D(YRAP)/D(MT)/2/PI/MT=D(N)/D(YRAP)/2/PI/(T**(2-L))/GAMMA(2-L,M(PION)/T)/MT**L/EXP(MT/T), where GAMMA(2-L,M(PION)/T), the complementary incomplete gamma function, is introduced in the normalization so that D(N)/D(YRAP) is a fitted parameter (and other free parameters are L and T). The mid-rapidity range for 2, 4 (E866 data), 6, 8 AGeV (E917 data) beam energy is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV (E917 data) the width is ABS((YRAP-Ynn)/Ynn) <0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only.

More…