Antiproton-proton elastic scattering has been measured at 100 GeV/c for 0.5<−t<2.5 (GeV/c)2 and at 200 GeV/c for 0.9<−t<4 (GeV/c)2. The data show that the −t≃1.4 (GeV/c)2 dip recently observed at 50 GeV/c persists to higher incident momenta. Proton-proton measurements made at the same beam momenta show similar structure.
CLEAR DIP OBSERVED AT -T=1.4 (GEV/C)**2.
Results are presented on π±p, K±p, and p±p elastic scattering measured with an apparatus having acceptance of 0.5<−t<2.5 (GeV/c)2 and 0.9<−t<11 (GeV/c)2 at 100 and 200 GeV/c, respectively. A diffractionlike dip is seen for the first time in the π−p t distribution at −t=4 (GeV/c)2. All meson-proton cross sections are found to be similar in the range 1<−t<2.5 (GeV/c)2, although some small systematic differences are observed. Cross sections for pp and p―p are compared with previous data.
No description provided.
No description provided.
No description provided.
Measurements of π±p backward elastic scattering have been made for incident pion momenta between 30 and 90 GeV/c and for 0<−u<0.5 (GeV/c)2. The momentum dependence of the cross sections is of a form expected from a simple Regge model, and the u dependence of the cross sections is similar to that observed at lower momenta.
No description provided.
No description provided.
No description provided.
Results are presented on the measurement of 200-GeV/c π−p elastic scattering at −t from 0.8 to 11 (GeV/c)2. As −t is increased, dσdt falls by ∼6 decades to a prominent dip at 4 (GeV/c)2, followed by a second maximum and than a slow decrease with increasing −t.
No description provided.
Backward elastic scattering of π± on protons has been measured for incident pion momenta between 30 and 90 GeV/c and 0≤−u≤0.5 (GeV/c)2. The u dependence of the cross sections is similar to that observed at lower momenta, and Regge models give acceptable fits to the data.
No description provided.
No description provided.
No description provided.
Data are presented on elastic πp and Kp scattering for values of −t up to 2.5 and 3.5 (GeV/c)2 at incident momenta of 100 and 200 GeV/c, respectively. All of the cross sections are found to be nearly identical, although there is some momentum dependence of the π+p data; a small systematic difference observed between pion and kaon data cannot be explained by geometrical scaling.
No description provided.
We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.
Cross sections for double diffractive production.
A search for charm production in the coherent diffractive dissociation reaction pSi→XSi was carried out for the modes D 0 → K − π + , D 0 → K − π + π + π − , and D + → K − π + π + . No charm signals were observed, and the 90% confidence level upper limit for coherent charm pair production was determined to be 26 μ b per silicon nucleus. The results are interpreted as an upper limit of 0.2% on the amount of intrinsic charm in the proton.
90 pct CL upper limits.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.