The production of ρ 0 (770) and f(1270) is studied in π − p interactions at 16 GeV/ c . By comparison with inclusive K ∗0 production in the reaction K − p → K ∗0 + anything, and with inclusive ρ 0 production in the reaction pp → ρ 0 + anything, it is found that the data can be interpreted in terms of two production processes: the central production of resonances and the fragmentation of the beam particle. For the π − p reaction, the inclusive ρ 0 beam fragmentation cross section is 3.1 ± 0.3 mb while that for central production is 1.6 ± 0.5 mb. The ρ 0 central production cross section is consistent with increasing with energy as ln s behaviour. The ratio of ρ 0 to π − inclusive cross sections (excluding the leading π − ) is ∼0.2, independent of energy. The ρ 0 to π − ratio increases as a function of p T to a constant value of ∼ 1 2 above 1 GeV/ c . The ρ (charged and neutral) and f decays account for (25 ± 4)% and (1.4 ± 0.3)%, respectively, of all pions produced.
No description provided.
No description provided.
No description provided.
Inclusive production of ϱ0,f, andg0 mesons and ofKs0,K*0 (892), ϕ andK*0(1430)mesons has been measured at <y>∼2.6 and <pT>∼1.1 GeV/c in proton-proton interactions at\(\sqrt s= 52.5\) GeV. The negative particle from the two-body decays of these resonances were identified by a threshold Cerenkov counter and used for triggering. Starting from the measured differential cross section, total inclusive cross sections for the vector and tensor mesons were determined using various parametrizations for they andpT dependence of the differential cross section. The experimental results are discussed in the framework of production models based on the parton picture. The strangeness suppresion factor λ=(0.30±0.10) due toSU(3) symmetry breaking of the quark sea is derived.
No description provided.
None
No description provided.
The inclusive cross section for the production ofKs0 mesons, Λ and\(\bar \Lambda\) particles in proton-proton interactions at\(\sqrt s= 63\) GeV is presented. The produced particles have been detected in the full phase space. Behaviour of the longitudinal and transversal depandences of the cross sections are discussed. The total production cross sections fors0 mesons and Λ particles was determined to\(\sigma _{{\rm K}_S^0 }= (25.5 \pm 1.4)\) mb andσΛ=(7.8±1.2) mb respectively. A strong energy dependence of the production cross sections is observed.
THE SIG(KS) ERROR INCLUDES THE UNCERTAINTY OF THE NORMALIZATION AND THE PT EXTRAPOLATION.
No description provided.
No description provided.
The inclusive production of charged hadrons has been measured in αα and αp collisions at nucleon-nucleon c.m. energies (√s nn )of 31 and 44 GeV, respectively, for transverse momenta p T up to 5 GeV/ c in the central rapidity ( y ) region. at high p T the yields are consistent with being 4 times and 16 times highere than the ones in pp interactions at y =0, for αp and αα interactions, respectively. However, an enhancement over these factors, as expected from an earlier FNAL experiment, cannot be ruled out.
No description provided.
No description provided.
No description provided.
Differential cross sections for αα and αp scattering have been measured at √ s =125 and 88 GeV, respectively, in the t range from −0.2 to −0.8 (GeV/ c ) 2 using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. Comparison with theoretical calculations using the Glauber model confirms the importance of including inelastic shadowing effects in very high energy nucleus-nucleus elastic scattering.
No description provided.
PLAB IS CALCULATED ASSUMING STATIONARY HELIUM TARGET.
The inclusive cross sections for the production of high transverse momentum π + and π − mesons in proton-proton interactions have been measured at the highest ISR energy √ s = 63 GeV and at a c.m. production angle of 50°. The cross sections for π + and π − mesons are compared as a function of transverse momentum. It is shown that the inclusive cross section of π − mesons decreases faster than the π + cross section. particle σ ( π ± )/ σ (charged particles) are presented as a function of transverse momentum.
.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.