Data are presented on Pomeron-Pomeron interactions which produce a centralπ+π− system in proton-proton collisions at\(\sqrt s= 62 GeV\) at the CERN Intersecting Storage Rings. This process may favor the production of gluonic bound states. A partial-wave analysis of theπ+π− system shows evidence for the production of the statesf0(975),f0(1400), andf2(1270). The fitted mass for thef2(1270) is about 50 MeV below the world average. In addition, the production mechanism for thef2(1270) is uniquely different from that for the other final states in that there is a correlation between the outgoing protons. this is consistent with a picture of two-gluon exchange with thef2(1270) produced by gluon fusion, and could indicate that thef2(1270) has a glueball component.
No description provided.
Experimental results on the production of dimuons by 800-GeV protons incident on a copper target are presented. The results include measurements of both the continuum of dimuons and the dimuon decays of the three lowest-mass ϒ S states. A description of the apparatus, data acquisition, and analysis techniques is included. A comparison of the results with data taken at lower incident energies indicates a scaling behavior of the continuum dimuon yields.
No description provided.
No description provided.
No description provided.
We have measured the production cross-section times branching ratio for J/ψ→μ + μ − in pp̄ interactions at √ s = 630 GeV in the kinematic range |y|<2.0 and p T >5 GeV /c, BR ( J /ψ→μ + μ − )σ( p p ̄ → J /ψ)=6.18±0.24±0.81 nb . The data sample collected in 1988 and 1989 for an integrated luminosity of 4.7 pb −1 represents a fivefold improvement over the statistics in our earlier study of the J / ψ production process, and the p T distribution which is measured extends to 28 GeV / c . Using event topology we show that the rate for the direct production of J / ψ , via radiative decays of χ states, is larger than that for production via B-hadrons. Production of ψ′ is also studied using the decay modes < ψ ′→ μ + μ − and ψ ′→ J / ψπ + ψ − .
Numerical values supplied by Nick Ellis.
.
.
Preliminary results are presented using the Wide Band photon beam at Fermilab to measure the cross-section of $D^{*\pm}$ and $D^{\pm}$ photoproduction on a Be target over the photon energy range from 100 GeV to 350 GeV....
INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+.
INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+, D0 --> K- 2PI+ PI-.
INCLUDES THE DECAYS: D+ --> K- 2PI+.
None
ANTIPROTONS STOPPING IN THE PHOTOEMULSION.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
We report measurements of b-quark and B-hadron production in pp̄ collisions at √ s =630 GeV. We use muon samples to extract beauty production cross-sections over a wide range of transverse momentum in the central rapidity range | y | < 1.5. We compare our results to an O(α s 3 ) QCD prediction and find good agreement over the measured b-quark transverse momentum range 6 GeV / c to 54 GeV / c . Using the shape of the p T and y distribution predicted by QCD to extrapolate our data, we infer a total cross-section for b-quark production at √s=630 GeV of σ( p p ̄ → b b ̄ + X )=19.3±7( exp. )±9( th. μ b .
No description provided.
The cross section is multipled on the B(J/PSI --> MU+ MU-).
No description provided.
The structure of the nucleon is studied by means of deep-inelastic neutrino-nucleon scattering at high energies through the weak neutral current. The neutrino-nucleon scattering events were observed in a 340-metric-ton fine-grained calorimeter exposed to a narrow-band (dichromatic) neutrino beam at Fermilab. The data sample after analysis cuts consists of 9200 charged-current and 3000 neutral-current neutrino and antineutrino events. The neutral-current valence and sea nucleon structure functions are extracted from the x distribution reconstructed from the measured angle and energy of the recoil-hadron shower and the incident narrow-band neutrino-beam energy. They are compared to those extracted from charged-current events analyzed as neutral-current events. It is shown that the nucleon structure is independent of the type of neutrino interaction, which confirms an important aspect of the standard model. The data are also used to determine the value of sin2θW=0.238±0.013±0.015±0.010 for a single-parameter fit, where the first error is from statistical sources, the second from experimental systematic errors, and the third from estimated theoretical errors.
Neutral-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
Neutral-current sea-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
Charged-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.
The transverse energy distributions have been measured for interactions of 32 S nuclei with Al, Ag, W, Pt, Pb, and U targets, at an incident energy of 200 GeV per nucleon in the pseudorapidity region −0.1 < ν lab < 5.5. These distributions are compared with those for 16 OW interactions in the same pseudorapidity region and with earlier measurements performed with 16 O and 32 S projectiles in the region −0.1 < ν lab < 2.9. These comparisons provide both a better understanding of the dynamics involved and improved estimates of stopping power and energy density.
No description provided.
No description provided.
No description provided.