We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.
The second systematic (DSYS) error is due to QCD evolution.
First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.
First moment of fitted G1 evaluated on the whole X region.
Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.
Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.
The ratio g1/F1 has been measured over the range 0.03
No description provided.
No description provided.
No description provided.
We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03
Proton data measured in the 4.5 degree spectrometer.
Proton data measured in the 7.0 degree spectrometer.
Deuteron data measured in the 4.5 degree spectrometer.
None
No description provided.
No description provided.
No description provided.
We report on a high-statistics measurement of the deuteron spin structure function g1d at a beam energy of 29 GeV in the kinematic range 0.029
No description provided.
Values of G1 computed assuming G1/F1 is independent of Q**2 and evaluated at Q**2 = 3 GeV**2.
We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.
2.6 pct rad length target.
2.6 pct rad length target.
2.6 pct rad length target.