Measurements of inelastic electron scattering have been made in the range 2.2 < ν < 3.8 GeV and 0.1 < | Q 2 | < 0.3 (GeV/ c ) 2 , on a selection of nuclei ranging from hydrogen and deuterium to uranium, by measuring the scattered electron only. Detailed calculations have been made of the contribution of radiative tails to the measured yield. The results show a small ‘shadowing’ consistent with other electroproduction experiments, and also with photoproduction experiments in this ν range, but the shadowing decreases rapidly as | Q 2 | increases.
DEUTERIUM TO HYDROGEN CROSS SECTION RATIO (PER NUCLEON). FOR E(P=3) = 2.25 AND THETA = 8.5, THE RATIO IS 0.911 +- 0.037 (DSYS = 0.040).
No description provided.
No description provided.
This paper presents results of an experiment on hadron production in deep-inelastic electron scattering. Good agreement with the predictions of the quark-parton model is found. The Fragmentation functions for u and d quarks into pions are determined, and comparison is made with other deep-inelastic processes and with recent quark jet parametrizations.
No description provided.
Results on the protron structure function, F2, are presented for 0.3<q2<80.0 GeV2 and 10<ν<200 GeV. The results support the conclusions of earlier work at 97 and 147 GeV that scaling is violated. A new value for R=σSσT=0.44±0.25 has been obtained using all the Fermilab proton measurements.
No description provided.
We have measured the inclusive electroproduction of positive and negative hadrons in the quark fragmentation region using the streamer chamber at DESY. Data are presented in terms of the variable z p = p / v in the kinematic region 1.8 < W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 . The positive hadron distributions contain a strong proton component. After subtraction of the proton component and elastic rho events, the distribution (1/ σ tot ) d σ /d z p for positive and negative hadrons agrees well with the corresponding distribution from e + e − annihilation (DORIS data). This behaviour supports the validity of the quark-parton model at surprisingly low Q 2 and W .
No description provided.
Electroproduction of hadrons is studied in the kinematic region W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 using the DESY streamer chamber. Prong cross sections, charged-particle multiplicities and inclusive π − distributions are presented. The average charged multiplicity is found to be independent of Q 2 in the Q 2 range studied here; however it is lower than in photoproduction. The fraction of forward π − is found to be significantly less in electroproduction than in photoproduction. The 〈 p ⊥ 2 〉 for inclusive π − is, for all x values, similar to that found in photoproduction.
No description provided.
No description provided.
No description provided.
We report on the analysis of inclusive neutral current events produced in neutrino and antineutrino narrow band beams. We find for incident neutrino energies in the range 12–200 GeV and for hadron energies above 12 GeV a neutral to charged current cross-section ratio of R v = 0.293 ± 0.010 for incident neutrinos, and R v = 0.35 ± 0.03 for antineutrinos. These ratios are consistent with the Weinberg-Salam model, with sin 2 θ w = 0.24 ± 0.02.
No description provided.
No description provided.
None
No description provided.
No description provided.
We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.
No description provided.
Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.
No description provided.
We report here additional positive results of a search for muonless neutrino- and anti-neutrino-induced events using an enriched antineutrino beam and a muon identifier of relatively high geometric detection efficiency. The ratio of muonless to muon event rates is observed to be R=0.20±0.05. We observe no background derived from ordinary neutrino or antineutrino interactions that is capable of explaining the muonless signal.
No description provided.