We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions.
Measured cross sections for the electron-pair events. For Bhabha scattering events both the leptons have to be inside 44 to 136 degrees.
Measured cross sections for the electron-pair events. For Bhabha scattering events both the leptons have to be inside 44 to 136 degrees.
Angular distributions for (E+ E-) events for the high energy event sample (ZETA <25 DEGS) Statistical and systematic errors are combined.
We report on measurements of e + e − annihilation into hadrons and lepton pairs. The data have been taken with the L3 detector at LEP at center-of-mass energies between 161 GeV and 172 GeV. In a data sample corresponding to 21.2 pb −1 of integrated luminosity 2728 hadronic and 868 lepton-pair events are selected. The measured cross sections and leptonic forward-backward asymmetries agree well with the Standard Model predictions.
No description provided.
Hadronic and leptonic cross-sections and forward-backward asymmetries are measured using 5.7 pb −1 of data taken with the ALEPH detector at LEP at centre-of-mass energies of 130 and 136 GeV. The results agree with Standard Model expectations. The measurement of hadronic cross-sections far away from the Z resonance improves the determination of the interference between photon and Z exchange. Constraints on models with extra Z bosons are presented.
Data with tight SPRIME cut.
Forward-Backward Asymmetry for tight SPRIME cuts.
Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.
Data from 1990 running period.
Data from 1991 running period.
Data for 1991 running period.
In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.
The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.
The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.
The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.
The cross section of the process e+e-\to\mu+\mu- was measured in the SND experiment at the VEPP-2M e+e- collider in the energy region \sqrt{s}=980, 1040 -- 1380 MeV. The event numbers of the process e+e-\to\mu+\mu- were normalized to the integrated luminosity measured using e+e-\to e+e- and e+e-\to\gamma\gamma processes. The ratio of the measured cross section to the theoretically predicted value is 1.006\pm 0.007 \pm 0.016 and 1.005 \pm 0.007 \pm 0.018 in the first and second case respectively. Using results of the measurements, the electromagnetic running coupling constant \alpha in the energy region \sqrt{s}=1040 -- 1380 MeV was obtained <1/\alpha> = 134.1\pm 0.5 \pm 1.2 and this is in agreement with theoretical expectation.
The measured E+ E- --> E+ E- cross section in the electron angle 30 to 150 degrees.
We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.
No description provided.
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50 GeV and 170 GeV, and 20 GeV and 140 GeV, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of 232.2 pb −1 . A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling λ for the on-shell production of an excited electron e ★ decaying into a γ e pair in the mass range 20 GeV
Measured cross sections for radiative Bhabha scattering events.
Measured cross sections for the quasi-real Compton scattering events.
None
'1'. '2'.
No description provided.
No description provided.
The production properties ofKs0,\(\bar \Lambda\) andK+p interactions at 32 GeV/c are investigated using the final statistics of the experiment. We present total and semi-inclusive cross sections and aver-age multiplicities. Estimates are given of the diffractive dissociation contributions to total and differential cross sections. Thex-,pT−, and transverse mass dependence of inclusive and semi-inclusive distributions is discussed as well as properties of “prompt”Ks0's. The ratio of “prompt”K890+ (K8900) to “prompt”K0 cross sections is measured to be 1.03±0.12 (0.98±0.17). From a comparison of\(\bar \Lambda\) production inK±p interactions at 32 GeV/c, we estimate a strange sea-quark suppression of 0.26 ±0.02. The double differential cross sections ofKs0's is studied as a function of Feynman-x andpT2, and a Triple-Regge fit performed. The data are compared in detail to versions of the Lund-model for low-pT hadronic collisions.
No description provided.