We have measured the cross section for e + e − →hadrons over the center of mass energy range of the Z 0 peak, from 88.22 to 95.03 GeV. We determine the Z 0 mass M z =91.164±0.013 (experiment) ±0.030 (LEP) GeV. Within the framework of the standard model we determine the invisible width, Γ invisible =0.502±0.018 GeV, and the number of light neutrino species, N ν =3.01±0.11. We exclude the existence of a supersymmetric scalar neutrino having a mass less than 31.4 GeV, at the 95% confidence level. We performed a model independent combined fit to the e + e − →hadrons and e + e − → μ + μ − data to determine total width, leptonic width and hadronic width of the Z 0 .
Cross sections from 1990 data. Additional systematic error 1.5 pct.
Cross sections from 1989 data. This data has been rescaled by 0.96 from original publication PL B237 (90) 136. Additional systematic error 2.0 pct.
We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.
Hadronic cross section from the charged track selection trigger.
Hadronic cross section from the calorimeter selection trigger.
Averaged hadronic cross section.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].
Corrected jet rates.
Second systematic error is theoretical.
The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .
Cross sections corrected for the effects of efficiency and kinematic cuts. Errors have systematic effects folded.
Acceptance corrected cross sections. Statistical errors only.
Acceptance corrected cross sections. Statistical errors only.
We have tested extra Z models in the reactions e + e − → μ + μ − , τ + τ − and hadrons in the energy range 50< s <64 GeV using the VENUS detector at the TRISTAN e + e − storage ring. Our data are in good agreement with the standard model prediction ( χ 2 N Df = 2.9 31 ) ). We have obtained 90% confidence-level lower limits of 105, 125 and 231 GeV for the masses of Z Ψ , Z η and Z χ bosons which are expected from the E 6 grand unified theory. We also place a 90% confidence-level lower limit of 426 GeV for the mass of an extra-Z boson whose couplings to quarks and leptons are assumed to be the same as those for the standard Z boson. Our results exceed the previous experimental limits from the p p collider experiments, although there have been some combined analyses reporting the limits better than those obtained in the present analysis.
New measurements.
New measurements. Statistical and systematic errors combined in quadrature.
New measurements.
The Crystal Ball detector has been used at the DORIS II storage ring at DESY to study the reactionγγ→π0π0π0 in theπ0π0π0 invariant mass range from 850 MeV/c2 to 2600 MeV/c2. An enhancement around 1750 MeV/c2 is attributed to theπ2(1670) resonance. The observedπ0π0 invariant mass distribution and theπ0 angular distributions are consistent with those expected for the decay chainπ2→π0f2(1270)→π0π0π0. From our measurements we find the following resonance parameters: two photon partial width\(\Gamma _{\pi _2 }^{\gamma \gamma }= (1.41 \pm 0.23 \pm 0.28)keV\), massM(π2)=(1742±31±49)MeV/c2. and total width\(\Gamma _{\pi _2 }^{tot}= (236 \pm 49 \pm 36)MeV\).
Data read from graph.
Cross section times branching ratio to 3pi0 assuming the decay chain pi2 --> pi0f2 --> 3pi0.
Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have observed production of the charmed-strange baryon Ξ c + and its neutral isospin partner, the Ξ c 0 . The Ξ c + was reconstructed in the final state Ξ − π + π + , while the Ξ c 0 was seen in decay to Ξ − π + and Ξ − π + π + π − . The average Ξ c fragmentation spectrum has been determined, as well as the production cross section times branching ratio for each decay mode. The charged and neutral masses were measured to be 2465.1 ± 3.6 ± 1.9 MeV/ c 2 and 2472.1 ± 2.7 ± 1.6 MeV/ c 2 respectively, corresponding to a mass-splitting, M ( Ξ c + ) − M ( Ξ c 0 ), of −7.0±4.5±2.2 MeV/ c 2 .
Cross sections times branching ratios for $\Xi_c^0$ and $\Xi_c^+$ production at $E_{\mathrm{cms}} = 10.5$ GeV and $x_p > 0.5$.
Cross sections times branching ratios for $\Xi_c^0$ and $\Xi_c^+$ production at $E_{\mathrm{cms}} = 10.5$ GeV and all $x_p$.
Data requested from authors.
We report a measurement of the p p total cross section at √ s =1.8 TeV using a luminosity-independent method. Our result is σ T =72.1±3.3 mb ; we also derive the total elastic cross section σ el =16.6±1.6 mb. A value is obtained for the total single diffraction cross section of 11.7±2.3 mb.
No description provided.
Assuming RHO = 0.145.
No description provided.
The relative production ratio of 3-jet events to the total number of hadronic events was studied in e + e − annihilations at centre-of-mass energies between 54 and 61.4 GeV. The QCD scale parameter has been determined to be Λ MS =254 −47 +55 ±56 MeV on the basis of a QCD cascade with the next-to-leading logarithmic approximation.
Data are uncorrected for initial radiation, detector effects, and quark hadronization.
LAMBDA-MSBAR determined from the 3-jet ratio.