We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.
No description provided.
No description provided.
No description provided.
The c.m. angular distribution of π+p elastic scattering at 1.6 GeV/c shows a strong forward diffraction peak decreasing exponentially with a slopeA + = (6.9±0.5) GeV−2 comparable to thatA − = (7.2±0.5) GeV−2 observed in a previous experiment for π-p elastic scattering at the same incident momentum. The behaviour of the π+ and the π− angular distributions is quite different beyond the diffraction peak. The π+p total elastic cross-section is found to be Σ01 = (16.70±0.45) mb.
No description provided.
No description provided.
No description provided.
New results are presented on the differential cross-section for the reaction α+p→π0+p, at energies between 600 and 1000 MeV, and c.m. pion angles Θ*π=40° and Θ*π=60°. The present data, together with that at Θ*π=40° already published (11), show an angle-independent position of the second resonance at about 750 MeV. Rather flat angular distributions in the forward c.m. hemisphere are also favoured by these data. On comparing the cross-sections obtained when detecting both the neutral pion and the recoil proton, and when detecting only the latter, estimates of the background of «ghost protons» are obtained, in agreement with the empirical curve proposed in ref. (11).
No description provided.
Photoproduction cross-section of the η-particle for incident photon energiesK from ∼800 to ∼1000 MeV has been measured at the 1.1 GeV Frascati electronsynchrotron. The differential cross-section for this process, at a c.m. angle of the η of ∼110°, turns out to be fairly constant for 830 MeV≤K≤900 MeV, and drops down by a factor 5 to 10 atK=950 MeV. These results are discussed in terms of a comparison with the data on the production of η's by pions, and with the data on pion-nucleon scattering and pion photoproduction. The conclusions are in agreement with the hypothesis that the η-N system is dominated at low energies by a resonance with orbital angular momentuml=0 (S 1/2,1/2 resonance).
No description provided.
In a previous experiment the cross-section for the photoproduction of pions in hydrogen near the second pion-nucleon resonance has been measured at 135° and 180° in the c.m.s. At 180° the measurements did show a very sharp peak at a gamma-ray energy of 700 MeV. The experiment has now been repeated only at 180°, with improved energy resolution. The new results, in agreement with the old ones, show the same sharp energy dependence at about the same value of the primary energy.
No description provided.
A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.
Data on pbar-b annihilation in flight into pizero-pizero-eta are presented for nine beam momenta 600 to 1940 MeV/c. The strongest four intermediate states are found to be f_2(1270)-eta, a_2(1320)-pi, sigma-eta and a_0(980)-pi. Partial wave analysis is performed mainly to look for resonances formed by pbar-p and decaying into pizero-pizero-eta through these intermediate states. There is evidence for the following s-channel I = 0 resonances : two 4^{++} resonances with mass and width (M,Gamma) at (2044, 208) MeV and (2320+-30, 220+-30) MeV/ three 2^{++} resonances at (2020+-50, 200+-70) MeV, (2240+-40, 170+-50) MeV and (2370+-50, 320+-50) MeV/ two 3^{++} resonances at (2000+-40, 250+-40) MeV and (2280+-30, 210+-30) MeV/ a 1^{++} resonance at (2340+-40, 340+-40) MeV/ and two 2^{-+} resonances at (2040+-40, 190+-40) MeV and (2300+-40, 270+-40) MeV.
No description provided.
We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.
The cross section for the reaction E+ E- --> K+ K- PI+ PI- measured with ISR data. Statistical errors only.
Cross section measurements for the reaction E+ E- --> K*(892)0 K- PI+. Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI PI+ PI-. Statistical errors only.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.