None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
MOMENTUM SPECTRA IN THE WINDOW P=0.1-6.0 HAVE BEEN FITTED BY THE FORMULA: (1/N)*D(N)/D(P)=CONST(Q=1)*EXP(-SLOPE(Q=1)*P)+CONST(Q=2)*EXP (-SLOPE(Q=2)*P).
None
No description provided.
No description provided.
BACKGROUND DISTRIBUTION WAS OBTAINED BY USING PROTONS FROM DIFFERENT EVENTS.
The transverse-momentum spectra of lambdas (Λ0, Λ¯0) produced in the central region has been measured in p¯p collisions at s=1.8 TeV at the Fermilab Collider. We find that the average transverse momentum of the lambdas increases more rapidly with center-of-mass energy than that of charged particles, and the ratio of lambdas to charged particles increases as a function of center-of-mass energy.
No description provided.
No description provided.
No description provided.
Differential cross sections for the emission of intermediate-mass fragments (3≤Zf≤14) at 48.5° and 131.5° in the interaction of xenon with 1–19 GeV protons have been measured. The excitation functions rise sharply with energy up to ∼10 GeV and then level off. The energy spectra were fitted with an expression based on the phase transition droplet model. Excellent fits with reasonable parameters were obtained for Ep≥9 GeV. Below 6 GeV, the fits show an increasing contribution with decreasing energy from another mechanism, believed to be binary breakup. A droplet model fit to the cross sections ascribed to the multifragmentation component is able to reproduce the variation of the yields with both fragment mass and proton energy. The results are interpreted in terms of the phase diagram of nuclear matter.
No description provided.
No description provided.
No description provided.
We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.
Corrected event shape distributions.
Corrected event shape distributions.
Corrected event shape distributions.
We have measured the mass of the Z boson to be 91.11±0.23 GeV/c2, and its width to be 1.61−0.43+0.60 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.62±0.23 GeV, corresponding to 3.8±1.4 neutrino species.
Data now superceded.
We have measured the mass of the Z boson to be 91.14±0.12 GeV/c2, and its width to be 2.42−0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9.
No description provided.
Results are presented on an investigation of photons produced in multihadronic final states frome+e− annihilation at 35 GeV and 44 GeV center of mass energies. Scalling violation between 14 and 44 GeV is observed in inclusive photon spectra. Comparing inclusive π0 spectra with charged pion spectra it is found that the average π0 multiplicity exceeds the charged pion multiplicity scaled by factor of 0.5 by (16±5)% and (21±7)% at 35 and 44 GeV respectively. The excess can be attributed to isospin violating decays of hadrons. The η multiplicity is found to be 〈nη〈=0.64±0.09±0.06 at 35 GeV. With a significance of three standard deviations a signal from quark bremsstrahlung is observed. The measured charge asymmetry in hadronic final states, due to the interference between initial and final state radiation, ofA=−0.141±0.041 is in accord with QED expectations. An interference effect in the azimuth angle distribution of charged jets around the photon direction is observed for the first time.
No description provided.
No description provided.
No description provided.
We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE
No description provided.
No description provided.