We have studied high-energy proton scattering on Be, C, Cu and Pb targets using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/ c , the square of the four-momentum transfer varied from t = 0.1 to t = 4.4 GeV 2 . We have recorded momentum distributions of scattered protons in the high-momentum range. An application of multiple-scattering theory yielded agreement of calculation and experimental results to within a ± 30% uncertainty of the former.
X ERROR D(OMEGA) = 0.0076 MSR.
X ERROR D(OMEGA) = 0.0076 MSR.
X ERROR D(OMEGA) = 0.0076 MSR.
Experimental data exhibiting the separation of single and double quasi-elastic scattering in proton-deuteron collisions at 19.2 GeV/ c and for momentum transfers around 1 GeV/ c are presented. An analysis of the scattering cross section in terms of the multiple scattering theory is given. The possibilities for the deduction of proton-neutron differential cross sections particularly at large momentum transfers are pointed out.
No description provided.
None
No description provided.
No description provided.
A systematic set of measurements of the global transverse energy distributions, dσ/dET and dET/dη, from beams of protons, O16 and Si28 at 14.6A GeV/c, incident on targets ranging from Be to Au is presented. The detector was a semicircular array of lead-glass blocks, covering polar angles 9°<θ<32°, whose total response provides a good measure of the produced particle yield in the central rapidity region of these reactions. Proton-nucleus spectra exhibit a similar shape on the high-energy tail, independent of target, suggesting that produced particles in such events arise mostly from the first collision of the projectile proton. For targets heavier than Cu, the high-energy edges of the oxygen-nucleus spectra, and of the silicon-nucleus spectra, reach ratios consistent with the geometry of central collisions. Angular distributions, dET/dη, are characterized by Gaussian fits, and an acceptance-independent form of the differential cross section is found, based on the maximum value of dET/dη. The projectile dependence of nucleus-nucleus spectra is studied in terms of two very different models: simple energy scaling and the wounded projectile nucleon model of p+A convolutions.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams.
Differential cross section at THETA(CM) = 90 degrees.
The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.
Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.
Minimum Bias production cross sections of $\eta$ mesons have been measured in 200AGeV S+Au and S+S collisions at the CERN SPS by reconstructing the $\eta\rightarrow\gamma\gamma$ decay. The measurements have been made over the rapidity range $2.1 \leq y \leq 2.9$ using the leadglass spectrometer of WA80. Within the statistical and systematical uncertainties the spectral shapes of $\pi~0$ and $\eta$ mesons yields are identical when their invariant differential cross section is plotted as a function of the transverse mass. The relative normalization of the $\eta$ to $\pi~0$ transverse mass spectra is found to be $0.53 \pm 0.07$ for S+Au and $0.43 \pm 0.15$ for S+S reactions. Extrapolation to full phase space leads to an integrated cross section ratio of $\eta$ to $\pi~0$ mesons of $0.15 \pm 0.02 {\rm (stat.)} \pm 0.02 {\rm (syst.)}$, and $0.12 \pm 0.03 {\rm (stat.)} \pm 0.02 {\rm (syst.)}$ for S+Au and S+S collisions, respectively.
No description provided.
No description provided.
No description provided.
Enhanced strange particle production, nonstatistical multiplicity fluctuations and two-pion Bose-Einstein correlations were measured in O, S-nucleus reactions at 60 and 200 GeV/nucleon. The results indicate significant collective effects in high-energy nucleus-nucleus collisions.
CENTRAL COLLISIONS.
CENTRAL COLLISIONS.
Product of charged kaons in central S + S and O + Au collisions at 200 GeV/nucleon has been studied in the NA 35 Streamer Chamber experiment. Mean multiplicities and transverse mass distributions were obtained. They were compared with nucleon-nucleon data and with model predictions.
No description provided.
No description provided.
No description provided.