This paper reports the observation of top-quark pair production in proton-lead collisions in the ATLAS experiment at the Large Hadron Collider. The measurement is performed using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_\mathrm{NN}}=8.16$ TeV in 2016. Events are categorised in two analysis channels, consisting of either events with exactly one lepton (electron or muon) and at least four jets, or events with two opposite-charge leptons and at least two jets. In both channels at least one $b$-tagged jet is also required. Top-quark pair production is observed with a significance over five standard deviations in each channel. The top-quark pair production cross-section is measured to be $\sigma_{t\bar{t}}= 58.1\pm 2.0\;\mathrm{(stat.)\;^{+4.8}_{-4.4} \;\mathrm{(syst.)}}\;\mathrm{nb}$, with a total uncertainty of 9%. In addition, the nuclear modification factor is measured to be $R_{p\mathrm{A}} = 1.090\pm0.039\;(\mathrm{stat.})\;^{+0.094}_{-0.087}\;(\mathrm{syst.})$. The measurements are found to be in good agreement with theory predictions involving nuclear parton distribution functions.
The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The figure shows the post-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $\mu$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.
Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.
This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.
Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.
This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.
Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.
Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.
Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.
The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval
Exclusive J/psi photoproduction cross section in p-Pb UPC.
Dissociative J/psi photoproduction cross section in p-Pb UPC.
Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s} = 13$ TeV at midrapidity with the ALICE detector are presented down to a transverse momentum ($p_{\rm T}$) of 0.2 GeV$/c$ and up to $p_{\rm T} = 35$ GeV$/c$, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p$-$Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the $p_{\rm T}$ range $0.5 < p_{\rm T} < 26$ GeV$/c$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p$-$Pb collisions grow faster than linear with the self-normalised multiplicity. A strong $p_{\rm T}$ dependence is observed in pp collisions, where the yield of high-$p_{\rm T}$ electrons increases faster as a function of multiplicity than the one of low-$p_{\rm T}$ electrons. The measurement in p$-$Pb collisions shows no $p_{\rm T}$ dependence within uncertainties. The self-normalised yields in pp and p$-$Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.
pT-differential cross section of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s}$ = 13 TeV measured at midrapidity
pT-differential cross section of electrons from heavy-flavour hadron decays in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV measured at midrapidity
The Nuclear modification factor RpPb of electrons from heavy-flavour hadron decays in p--Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV
Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
The production of inclusive, prompt and non-prompt J/$\psi$ was studied for the first time at midrapidity ($ -1.37 < y_{\rm cms} < 0.43$) in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV with the ALICE detector at the LHC. The inclusive J/$\psi$ mesons were reconstructed in the dielectron decay channel in the transverse momentum ($p_{\rm T}$) interval $0 < p_{\rm T} < 14$ GeV/$c$ and the prompt and non-prompt contributions were separated on a statistical basis for $p_{\rm T} > 2$ GeV/$c$. The study of the J/$\psi$ mesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of $689 \pm 13 \mu{\rm b}^{-1}$. The proton$-$proton reference cross section for inclusive J/$\psi$ was obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing the $p_{\rm T}$-differential J/$\psi$ production cross sections. The $p_{\rm T}$-differential nuclear modification factors $R_{\rm pPb}$ of inclusive, prompt, and non-prompt J/$\psi$ are consistent with unity and described by theoretical models implementing only nuclear shadowing.
d$^2\sigma$/d$y$d$p_{\rm T}$ in bins of $p_{\mathrm{T}}^{J/\psi}$ for inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV.
Nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.
$p_\mathrm{T}$ integrated nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.
The study of the azimuthal anisotropy of inclusive muons produced in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, $v_2$, is performed as a function of transverse momentum $p_{\rm T}$ in the 0-20% high-multiplicity interval at both forward ($2.03 < y_{\rm CMS} < 3.53$) and backward ($-4.46 < y_{\rm CMS} < -2.96$) rapidities over a wide $p_{\rm T}$ range, $0.5 < p_{\rm T} < 10$ GeV/$c$, in which a dominant contribution of muons from heavy-flavour hadron decays is expected at $p_{\rm T} > 2$ GeV/$c$. The $v_2$ coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward-central two-particle correlations. Both techniques give compatible results. A positive $v_2$ is measured at both forward and backward rapidities with a significance larger than $4.7\sigma$ and $7.6\sigma$, respectively, in the interval $2 < p_{\rm T} < 6$ GeV/$c$. Comparisons with previous measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems.
Inclusive muon $v_{2}^{\mu}$ as a function of $p_{\mathrm{T}}$ is measured by two-particle correlation method at forward rapidities in high-multiplicity (0$-$20%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$= 8.16 TeV. The event activity is estimated with the V0M estimator.
Inclusive muon $v_{2}^{\mu}$ as a function of $p_{\mathrm{T}}$ is measured by two-particle cumulant method at forward rapidities in high-multiplicity (0$-$20%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$= 8.16 TeV. The event activity is estimated with the V0M estimator.
Inclusive muon $v_{2}^{\mu}$ as a function of $p_{\mathrm{T}}$ is measured by two-particle correlation method at backward rapidities in high-multiplicity (0$-$20%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$= 8.16 TeV. The event activity is estimated with the V0M estimator.
A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.