The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain
Total systematic errors are given.
We have investigated the elastic scattering of high energy $\Sigma^-$ off electrons from carbon and copper targets using the CERN hyperon beam. Scattering events a
No description provided.
We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .
Data read from graph. Systematic error on M is of order of 2% or less.
Data read from graph.
No description provided.
We report the measurement of the differential cross section of the reaction γ +p→π0 +p at a photon energy of 1.4 GeV and pion c.m. angles between 60 and 175 degrees. The angular distribution confirms the simple quark model prediction of a pure magnetic excitation of theF37 (1950) resonance.
No description provided.
At the Bonn 2.5 GeV electron synchrotron we have measured the differential cross section of the reaction γp→π0p at a pion CM angle of 170° and at photon energiesKγ between 0.6 and 1.8 GeV. In comparison to previous measurements the accuracy of the data was improved substantially. For the first time in neutral pion photoproduction a cusp structure at the η-threshold has been confirmed [1].
No description provided.
The target asymmetry for the reaction γ p → K + Λ 0 was measured at the Bonn 2.5 GeV synchroton. Data were taken at a fixed kaon c.m. angle of 90° and at photon energies between 1.1 and 1.3 GeV. The kaons were detected in a large aperture magnetic spectrometer.
5 PCT TARGET POLARIZATION UNCERTAINTY INCLUDED IN QUOTED ERRORS.
Measurements of the target asymmetry T = ( σ ↑ − σ ↓)/( σ ↑ + σ ↓) for the reactions γ p → π + n and γ n → π − p at a fixed photon energy of 850 MeV and pion c.m. angles between 70° and 150° are reported. The data are compared to the previously measured angular distribution at 700 MeV.
No description provided.
No description provided.
A polarized neutron target was used at the Bonn 2.5 GeV Synchrotron to measure the target asymmetry for the reaction γ n↑→ π − p at a fixed photon energy of 700 MeV and pion c.m. angles between 50° and 140°. The pions were detected in a large aperture magnetic spectrometer. The data show a structure which is quite different from the distribution previously measured for the reaction γ p↑→ π + n.
No description provided.
At the Bonn 2.5 GeV electron synchrotron the angular distribution of the target asymmetry T = (σ↑ − σ↓) (σ↑ + σ↓) for the reaction γp↑ → π + n was measured at a mean photon energy of 700 MeV and pion CM-angles from 50° to 155°. The combination of a 3 He-cryostat, polarizing the free protons in the target up to 65%, with a large acceptance magnet for pion detection led to statistical errors of the target asymmetry comparable with those of cross section measurements.
No description provided.